• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

연속된 수화 인식을 위한 자동화된 Coarticulation 검출 (Automatic Coarticulation Detection for Continuous Sign Language Recognition)

10 페이지
기타파일
최초등록일 2025.03.02 최종저작일 2009.01
10P 미리보기
연속된 수화 인식을 위한 자동화된 Coarticulation 검출
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 1호 / 82 ~ 91페이지
    · 저자명 : 양희덕, 이성환

    초록

    수화 적출은 연속된 손 동작에서 의미 있는 수화 단어를 검출 및 인식하는 것을 말한다. 수화는 손의 움직임과 모양의 변화가 다양하기 때문에 수화 문장에서 수화를 적출하는 것은 쉬운 문제가 아니다. 특히, 자연스러운 수화 문장에는 의미 있는 수화, 수화가 아닌 손동작이 무작위로 발생한다. 본 논문에서는 CRF(Conditional Random Field)에 기반한 적응적 임계치 모델을 제안한다. 제한된 모델은 수화 어휘집에 정의된 수화 손동작과 수화가 아닌 손동작을 구별하기 위한 적응적 임계치 역할을 수행한다. 또한, 수화 적출 및 인식의 성능 향상을 위해 손 모양 기반 수화 인증기, 짧은 수화 적출기, 부사인(subsign) 추론기를 제안된 시스템에 적용하였다. 실험 결과, 제안된 방법은 연속된 수화 동작 데이타에서 88%의 적출률, 사전에 적출된 수화 동작 데이타에서 94%의 인식률을 보였으며, 적응적 임계치 모델, 짧은 수화 적출기, 손 모양 기반 수화 인증기, 부사인 추론기를 사용하지 않은 CRF 모델은 연속된 수화 동작 데이타에서 74%의 적출률, 사전에 적출된 수화 동작 데이타에서 90%의 인식률을 보였다.

    영어초록

    Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 24일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:57 오후