• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

시계열 데이타 클러스터링에서 푸리에 진폭 기반의 프라이버시 보호 (Privacy-Preserving Clustering on Time-Series Data Using Fourier Magnitudes)

14 페이지
기타파일
최초등록일 2025.03.02 최종저작일 2008.12
14P 미리보기
시계열 데이타 클러스터링에서 푸리에 진폭 기반의 프라이버시 보호
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 35권 / 6호 / 481 ~ 494페이지
    · 저자명 : 김혜숙, 문양세

    초록

    본 논문에서는 시계열 데이타 클러스터링에서 DFT 진폭 기반의 프라이버시 보호 기법을 제안한다. 기존의 프라이버시 보호 연구인 DFT 계수 기법은 원본과 유사한 데이타가 복원될 수 있어 프라이버시 보호 측면에서 큰 문제점이 있다. 반면에, 제안한 DFT 진폭 기법은 DFT 변환 후에 위상을 제외한 진폭만을 사용함으로써 원본 데이타를 복원하기 매우 어려운 특징을 가진다. 본 논문에서는 우선 기존의 DFT 계수 기법이 복원이 용이한 함수이고, 제안한 DFT 진폭 기법이 복원이 어려운 함수임을 체계적으로 설명한다. 다음으로, 클러스터링 정확도를 대신하고 진폭을 선택하기 위한 척도로서 거리-순서 보존 정도의 개념을 제안한다. 거리-순서 보존 정도는 객체들의 상대적 순서가 클러스터링 보호 함수의 적용 전후에 얼마나 보존되는지의 척도를 나타낸다. 본 논문에서는 이러한 거리-순서 보존 정도의 개념을 사용하여 DFT 진폭 기법에서 진폭을 선택하는 탐욕적 전략들을 제시한다. 즉, 제안한 탐욕적 전략은 거리-순서 보존 정도를 극대화하는 방향으로 DFT 진폭을 선택하여, 궁극적으로 클러스터링 정확도를 높이고자 하는 방법이다. 마지막으로 실험을 통해 제안한 거리-순서 보존 정도가 클러스터링 정확도를 대신할 수 있는 척도임을 보인다. 또한, 제안한 DFT 진폭 기법의 탐욕적 전략들이 기존의 DFT 계수 기법에 비해 정확도가 크게 떨어지지 않음을 확인한다. 이 같은 결과를 볼 때, 제안한 DFT 진폭 기법은 DFT 계수 기법에 비해 프라이버시 보호 정도를 크게 개선했을 뿐 아니라 비교적 정확한 클러스터링 정확도를 보이는 우수한 연구 결과라 사료된다.

    영어초록

    In this paper we propose Fourier magnitudes based privacy preserving clustering on time-series data. The previous privacy-preserving method, called DFT coefficient method, has a critical problem in privacy-preservation itself since the original time-series data may be reconstructed from privacy-preserved data. In contrast, the proposed DFT magnitude method has an excellent characteristic that reconstructing the original data is almost impossible since it uses only DFT magnitudes except DFT phases. In this paper, we first explain why the reconstruction is easy in the DFT coefficient method, and why it is difficult in the DFT magnitude method. We then propose a notion of distance-order preservation which can be used both in estimating clustering accuracy and in selecting DFT magnitudes. Degree of distance-order preservation means how many time-series preserve their relative distance orders before and after privacy-preserving. Using this degree of distance-order preservation we present greedy strategies for selecting magnitudes in the DFT magnitude method. That is, those greedy strategies select DFT magnitudes to maximize the degree of distance-order preservation, and eventually we can achieve the relatively high clustering accuracy in the DFT magnitude method. Finally, we empirically show that the degree of distance-order preservation is an excellent measure that well reflects the clustering accuracy. In addition, experimental results show that our greedy strategies of the DFT magnitude method are comparable with the DFT coefficient method in the clustering accuracy. These results indicate that, compared with the DFT coefficient method, our DFT magnitude method provides the excellent degree of privacy-preservation as well as the comparable clustering accuracy.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 31일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:42 오후