• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법 (Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems)

7 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.06
7P 미리보기
퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 18권 / 3호 / 360 ~ 366페이지
    · 저자명 : 손창식, 정환묵, 권순학

    초록

    퍼지 규칙기반 분류 시스템에서 초기의 퍼지 분할은 주어진 데이터가 가진 속성들의 도메인을 고려함으로서 결정되어지고, 최적의 분류 경계면은 초기에 정의된 퍼지 분할의 파라미터들을 조정함으로서 찾을 수 있다. 본 논문에서는 학습과정들을 사용하지 않고 패턴분류의 성능을 최대화하기 위해 통계적 정보에 기반을 둔 퍼지 분할의 선택방법을 제안한다. 제안된 방법에서 통계적 정보는 주어진 수치적인 데이터로부터 각 입력 속성의 ‘불확실성 영역’, 즉 패턴분류문제에서 분류 경계면이 결정되는 영역을 추출하기 위해 사용되었다. 또한 통계적인 정보에 의해서 생성된 퍼지 분할구간에 대응하는 후보 규칙들을 추출하기 위한 방법과 그 후보 규칙들 간의 커플링 문제를 최소화하기 위한 방법도 추가적으로 논의하였다. 실험에서는 제안된 방법의 효용성을 보이기 위해 IRIS와 New Thyroid Cancer 데이터를 사용한 기존 패턴분류 방법들과의 분류 정확성을 비교하였고, 그 결과들로부터 제안된 방법이 기존의 방법들보다 더 좋은 분류 정확성을 제공함을 확인할 수 있었다.

    영어초록

    The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 24일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:53 오전