PARTNER
검증된 파트너 제휴사 자료

R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석 (Search Space Analysis of R-CORE Method for Bayesian Network Structure Learning and Its Effectiveness on Structural Quality)

7 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.08
7P 미리보기
R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 18권 / 4호 / 572 ~ 578페이지
    · 저자명 : 정성원, 이도헌, 이광형

    초록

    본 논문에서는 대규모 베이지안 망 구조 학습을 위해 제안되었던 R-CORE 방법의 탐색 공간의 크기에 대한 개략적인 분석과 실제 문제에 적용하였을 경우의 효과에 대한 실험적 결과를 제시한다. R-CORE 방법은 베이지안 망 구조 학습의 탐색 공간을 축소하기 위해 제안된 확률변수들의 재귀적 군집화와 오더 제한 방법이다. 알려진 벤치마크 베이지안 망을 이용한 분석을 통해, 제안되었던 R-CORE 방법이 worst case에는 기존의 방법과 유사한 탐색 공간을 가지나 평균적으로 기존방법보다 훨씬 적은 탐색 공간만을 고려한다는 것을 보인다. 또한 평균적으로 훨씬 적은 탐색 공간만을 고려하는 결과, 구조 탐색에서 기존 방법에 비해 상대적으로 적은 overfitting이 일어남을 실험적으로 보인다.

    영어초록

    We analyze the search space considered by the previously proposed R-CORE method for learning Bayesian network structures of large scale. Experimental analysis on the search space of the method is also shown. The R-CORE method reduces the search space considered for Bayesian network structures by recursively clustering the random variables and restricting the orders between clusters. We show the R-CORE method has a similar search space with the previous method in the worst case but has a much less search space in the average case. By considering much less search space in the average case, the R-CORE method shows less tendency of overfitting in learning Bayesian network structures compared to the previous method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:48 오후