• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화 (Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts)

16 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.09
16P 미리보기
그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 35권 / 9호 / 572 ~ 587페이지
    · 저자명 : 박안진, 정기철

    초록

    SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

    영어초록

    The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as k-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 10일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:09 오전