PARTNER
검증된 파트너 제휴사 자료

k-최근접 템플릿기반 다중 분류기 결합방법 (Multiple Classifier Fusion Method based on k-Nearest Templates)

5 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.06
5P 미리보기
k-최근접 템플릿기반 다중 분류기 결합방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 14권 / 4호 / 451 ~ 455페이지
    · 저자명 : 민준기, 조성배

    초록

    본 논문에서는 다중 분류기를 효과적으로 결합하기 위하여 k-최근접 템플릿방법을 제안한다. 이는 하나의 클래스를 여러개의 템플릿으로 모델링하기 위하여 분류기의 출력값을 기반으로 각 클래별 학습 샘플들을 여러개의 하위클래스로 분해하고, 각 하위클래스별 분류기 출력값의 평균을 계산하여 지역화된 템플릿을 생성한다. 그 뒤 평가샘플과 각 템플릿간의 거리를 계산하고, k개의 최근접 템플릿들 중 가장 많은 비율을 차지하는 클래스로 평가샘플을 분류한다. 본 논문에서는 클래스 분해를 위해 C-means 클러스터링 알고리즘을 이용하였으며, k값은 주어진 데이타 셋의 클래스 내 밀집도와 클래스 간 분리도에 따라 자동으로 결정하였다. 제안하는 방법은 각 클래스별로 여러 개의 모델을 사용하며, 이들 중 가장 유사한 하나의 모델과 매칭하는 대신 k개의 모델을 참조하기 때문에 안정적이고 높은 분류성능을 획득할 수 있다. 본 논문에서는 UCI와 ELENA데이타베이스를 이용한 실험을 통해 제안하는 방법이 기존의 결합방법들에 비해 우수한 분류성능을 보임을 확인하였다.

    영어초록

    In this paper, the k-nearest templates method is proposed to combine multiple classifiers effectively. First, the method decomposes training samples of each class into several subclasses based on the outputs of classifiers to represent a class as multiple models, and estimates a localized template by averaging the outputs for each subclass. The distances between a test sample and templates are then calculated. Lastly, the test sample is assigned to the class that is most frequently represented among the k most similar templates. In this paper, C-means clustering algorithm is used as the decomposition method, and k is automatically chosen according to the intra-class compactness and inter-class separation of a given data set. Since the proposed method uses multiple models per class and refers to k models rather than matches with the most similar one, it could obtain stable and high accuracy. In this paper, experiments on UCI and ELENA database showed that the proposed method performed better than conventional fusion methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회 컴퓨팅의 실제 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 06일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:12 오전