• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

GPU상에서 동작하는 Ray Tracing을 위한 효과적인 k-D tree 탐색 알고리즘 (An Efficient k-D tree Traversal Algorithm for Ray Tracing on a GPU)

8 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.04
8P 미리보기
GPU상에서 동작하는 Ray Tracing을 위한 효과적인 k-D tree 탐색 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 시스템 및 이론 / 35권 / 3호 / 133 ~ 140페이지
    · 저자명 : 강윤식, 박우찬, 서충원, 양성봉

    초록

    본 논문은 GPU상에서 작동되는 ray tracing을 위한 효과적인 k-D tree 탐색 알고리즘을 제안한다. 기존의 k-D tree를 위한 GPU 기반 탐색 알고리즘은 임의의 단말노드에서 교차되는 primitive를 찾지 못한 경우, root 노드 방향으로 bottom-up 탐색하여 부모 노드에서 bounding box 교차검사를 이용해 형제 노드의 기 방문 여부를 판단한다. 이러한 방법은 이미 방문한 부모 노드의 방문과 bounding box 교차검사를 중복적으로 수행한다. 본 논문에서 제안하는 알고리즘은 bottom-up 탐색을 수행 할 때 형제 노드가 이전에 방문했는지를 확인할 수 있는 효율적인 방법을 제시함으로써 형제노드 및 부모노드의 방문을 생략하도록 하고, 또한 아직 방문하지 않은 노드에 대해서만 bounding box 교차검사를 수행함으로써 중복된 연산을 피한다. 결과적으로 본 논문의 실험은 기존 알고리즘 대비 제안하는 알고리즘이 약 30%의 성능 향상이 있음을 보여 준다.

    영어초록

    This paper proposes an effective k-D tree traversal algorithm for ray tracing on a GPU. The previous k-D tree traverse algorithm based on GPU uses bottom-up searching from a leaf to the root after failing to find the ray intersected primitive in the leaf node. During the bottom-up search the algorithm decides the current node is visited or not from the parent node. In such a way, we need to visit the parent node which was already visited and the duplicated bounding box intersection tests. The new k-D tree traverse algorithm reduces the brother and parent duplicated visit by using an efficient method which decides whether the brother node is already visited or not during the bottom-up search. Also the algorithm take place bounding box intersection tests only for the nodes which is not yet done. As a result our experiment shows the new algorithm is about 30% faster than the previous.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 시스템 및 이론”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:24 오후