PARTNER
검증된 파트너 제휴사 자료

지지벡터기계와 적응적 특징을 이용한 강인한 지문분류 (A Robust Fingerprint Classification using SVMs with Adaptive Features)

9 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.01
9P 미리보기
지지벡터기계와 적응적 특징을 이용한 강인한 지문분류
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 35권 / 1호 / 41 ~ 49페이지
    · 저자명 : 민준기, 조성배

    초록

    지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하여 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 그런데, 지문의 고유성으로 인해 전역특징이 다양하게 분포함에도 불구하고, 기존의 지문분류 방법들은 모든 지문에 대해 고정된 영역으로부터 비적응적으로 전역특징을 추출하였다. 본 논문에서는 다양한 지문을 효과적으로 분류하기 위해 각 지문에 적응적으로 특징을 추출하는 방법을 제안한다. 이는 각 지문의 융선 방향의 변화량을 계산하여 적응적으로 특징영역을 탐색한 후, 특징영역내의 융선 방향 값을 특징벡터로 추출하고 지지벡터기계(Support Vector Machines)를 이용해 분류한다. 본 논문에서는 NIST4 데이타베이스를 이용하여 실험을 수행하였다. 그 결과 5클래스 분류에 대해 90.3%, 4클래스 분류에 대해 93.7%의 분류성능을 얻었으며, 비적응적으로 추출한 특징벡터와의 비교실험을 통해 제안하는 적응적 특징추출방법의 유용성을 입증하였다.

    영어초록

    Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:18 오후