PARTNER
검증된 파트너 제휴사 자료

비선형 매니폴드 학습을 이용한 얼굴이미지 합성

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
7 페이지
기타파일
최초등록일 2025.02.27 최종저작일 2004.02
7P 미리보기
비선형 매니폴드 학습을 이용한 얼굴이미지 합성
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 31권 / 2호 / 182 ~ 188페이지
    · 저자명 : 조은옥, 김대진, 방승양

    초록

    얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다. 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다. 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 19일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:49 오전