PARTNER
검증된 파트너 제휴사 자료

인수분해 공식과 정규기저를 이용한 GF(2m)상의 고속 곱셈 역원 연산 알고리즘

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.02.27 최종저작일 2003.06
6P 미리보기
인수분해 공식과 정규기저를 이용한 GF(2m)상의 고속 곱셈 역원 연산 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 시스템 및 이론 / 30권 / 6호 / 324 ~ 329페이지
    · 저자명 : 장용희, 권용진

    초록

    Diffie-Hellman 키분배 시스템과 타원곡선 암호시스템과 같은 공개키 기반 암호시스템은GF(2m) 상에서 정의된 연산, 즉 덧셈, 뺄셈, 곱셈 및 곱셈 역원 연산을 기반으로 구축되며, 이들 암호시스템을 효율적으로 구현하기 위해서는 위 연산들을 고속으로 계산하는 것이 중요하다. 그 중에서 곱셈 역원이 가장 time-consuming하여 많은 연구 대상이 되고 있다. Fermat 정리에 의해 β∈GF(2m)의 임의의 원소에 대해 곱셈 역원을 고속으로 계산하기 위해서는, 2m - 2을 효율적으로 분해하여 곱셈 횟수를 감소시키는 것이 가장 중요하며, 이와 관련된 알고리즘들이 많이 제안되어 왔다. 이 중 Itoh와 Tsujii가 제안한 알고리즘[2]은 정규기저를 사용해서 필요한 곱셈 횟수를 O(log m)까지 감소시켰으며, 또한 이 알고리즘을 향상시킨 몇몇 알고리즘들이 제안되었지만, 분해과정이 복잡하다는 등의 단점이 있다[3,5]. 본 논문에서는 실제 어플리케이션에서 주로 많이 사용되는 m = 2n 인 경우에, 인수분해 공식
    x³- y³= (x - y)(x²+ xy + y²)와 정규기저를 이용해서 곱셈 역원을 고속으로 계산하는 알고리즘을 제안한다. 본 논문의 알고리즘은 곱셈 횟수가 Itoh와 Tsujii가 제안한 알고리즘 보다 적으며, 2m - 2 의 분해가 기존의 알고리즘 보다 간단하다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 시스템 및 이론”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:48 오후