• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

건전성 예측을 위한 모델변수 추정방법의 비교

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
8 페이지
어도비 PDF
최초등록일 2023.04.05 최종저작일 2012.08
8P 미리보기
건전성 예측을 위한 모델변수 추정방법의 비교
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국전산구조공학회
    · 수록지 정보 : 한국전산구조공학회 논문집 / 25권 / 4호
    · 저자명 : 안다운, 김남호, 최주호

    초록

    건전성 예측은 구조물의 고장이 발생될 때까지 남은 시간인 잔존유효수명을 예측하는 것으로, 이는 안전 및 정비 계획과 직접적으로 연관되기 때문에 매우 중요하다. 건전성 예측방법에는 물리모델 기반방법, 데이터 기반방법과 두 방법의 장점 을 통합하는 방법이 있으며, 본 연구에서는 잔존수명 예측의 정확도가 모델변수 추정과 직접적으로 관련되는 물리모델 기 반 건전성 예측에 초점을 맞춘다. 물리모델기반 건전성 예측에서는 모델변수 추정을 통해 시스템 상태의 장기 예측이 가능 하지만, 대부분의 실제 구조물들의 상태모델은 여러 개의 모델변수를 포함함은 물론이고, 그 변수들이 서로 상관되어 있기 때문에 모델변수를 추정하는 일은 간단한 문제가 아니다. 본 연구에서는 물리모델 기반 건전성 예측을 위한 세 가지 변수 추정방법들의 차이를 논한다. 이 세 가지 방법들은 파티클 필터, 전반적인 베이지안 접근법, 그리고 순차적인 베이지안 접 근법으로 모두 베이지안 추론이라는 하나의 이론적 바탕에 기반하지만, 샘플링 방법이나 갱신 절차 등에서 차이가 있다. 균열성장을 표현하는 Paris 모델의 변수 추정을 통해 세 가지 방법의 차이점이 논해지고, 건전성 예측 메트릭을 이용하여 정량적 차이를 표현한다. 파티클 필터방법이 건전성 예측 메트릭 측면에서 가장 높은 성능을 나타내었지만, 전반적인 베이 지안 방법은 파티클 필터방법과 근소한 차이를 보이면서도 데이터가 집단으로 존재할 때에는 가장 효율적인 방법으로 나 타났다.

    영어초록

    Remaining useful life(RUL) prediction of a system is important in the prognostics field since it is directly linked with safety and maintenance scheduling. In the physics-based prognostics, accurately estimated model parameters can predict the remaining useful life exactly. It, however, is not a simple task to estimate the model parameters because most real system have multivariate model parameters, also they are correlated each other. This paper presents representative methods to estimate model parameters in the physics-based prognostics and discusses the difference between three methods; the particle filter method(PF), the overall Bayesian method(OBM), and the sequential Bayesian method(SBM). The three methods are based on the same theoretical background, the Bayesian estimation technique, but the methods are distinguished from each other in the sampling methods or uncertainty analysis process. Therefore, a simple physical model as an easy task and the Paris model for crack growth problem are used to discuss the difference between the three methods, and the performance of each method evaluated by using established prognostics metrics is compared.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자가 등록한 자료는 매우 유익하고, 주제가 잘 정리되어 있어 학습에 큰 도움이 됩니다. 특히 자료의 품질이 높고, 내용이 풍부하여 많은 정보를 얻을 수 있었습니다. 앞으로도 이러한 유익한 자료가 계속 등록되기를 기대합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “한국전산구조공학회 논문집”의 다른 논문도 확인해 보세요!

    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2026년 01월 26일 월요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    7:07 오전