PARTNER
검증된 파트너 제휴사 자료

유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 : 제주시 시범사업지역을 대상으로

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
11 페이지
어도비 PDF
최초등록일 2015.03.25 최종저작일 2008.08
11P 미리보기
유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 : 제주시 시범사업지역을 대상으로
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 26권 / 4호
    · 저자명 : 정소영, 백승걸, 강정규

    목차

    Ⅰ. 서론
    Ⅱ. 기존 문헌 검토
    Ⅲ. 표본OD 산정
    Ⅳ. 표본OD의 전수화
    Ⅴ. 결론 및 향후 연구과제
    참고문헌

    초록

    최근 교통ㆍ물류 분야에서도 유비쿼터스 환경의 정보수집체계 및 이를 응용한 서비스 개발의 필요성이 매년 높아지고
    있다. 프로브 차량과 무선통신기술을 활용한 교통정보 수집체계는 그 대표적인 사례로 차량의 기종점 자료를 이용하여
    시간대별 OD를 산정하는 것이 가능하다. 그러나 프로브 차량 정보를 활용하여 산정된 OD는 시간적ㆍ공간적으로 변동되는
    표본OD이기 때문에 이를 정적OD로 전환하기 위해서는 수집정보를 집적하여 적정 표본율을 산정하고, 표본OD를 전수화하는
    과정이 필요하다. 본 연구는 제주시를 대상으로 수집된 실제 데이터를 표본OD 산정 및 전수화 알고리즘에 적용하여
    표본OD를 산정하고 이를 전수화하였다. 각 링크별 관측교통량과 배분교통량과의 오차를 비교 검토한 결과 링크별 관측교통량
    과 배분교통량의 평균 오차율은 22.9%, 상ㆍ하위 10%의 이상 자료를 제거한 후의 평균 오차율은 17.6%로 각각 나타났다.
    본 연구는 기존OD가 존재하지 않는 지역에서 프로브 차량의 경로정보를 활용하여 정적OD를 산정하였다는 점과 적정
    오차율 내 수렴을 위한 적정 표본율을 제시하였다는 점에서 그 의의를 찾을 수 있다.

    영어초록

    Information collection systems and applications in a ubiquitous environment has emerged as a leading
    issue in transportation and logistics. A productive application example is a traffic information collection
    system based on probe vehicles and wireless communication technology. Estimation of hourly OD pairs
    using probe OD data is a possible target. Since probe OD data consists of sample OD pairs, which vary
    over time and space, computation of sample rates of OD pairs and expansion of sample OD pairs into
    static OD pairs is required. In this paper, the authors proposed a method to estimate sample OD data
    with probe data in Jeju City and expand those into static OD data. Mean absolute percentage difference
    (MAPD) error between observed traffic volume and assigned traffic volume was about 22.9%. After removing
    abnormal data, MAPD error improved to 17.6%. Development of static OD estimation methods using
    probe vehicle data in a real environment is considered the main contribution of this paper.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자의 자료는 항상 최신 정보를 반영하고 있어 믿을 수 있습니다. 특히, 각 주제에 대한 깊이 있는 분석과 명확한 설명 덕분에 복잡한 개념도 쉽게 이해할 수 있었습니다. 여러분에게도 강력히 추천합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)학지사와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “대한교통학회지”의 다른 논문도 확인해 보세요!

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 08월 03일 일요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    9:12 오전