
총 190개
-
서강대학교 22년도 전자회로실험 10주차 결과레포트2025.01.131. MOSFET 소스 팔로워 소스 팔로어의 이론적인 전압이득은 1/gm이 작은 값이기에, 거의 1에 가까운 이득을 보인다. 바이어스가 포함된 소스 팔로어의 경우도, 소신호 등가회로를 이용해 전압이득을 계산할 수 있다. 실험 결과, 소스 팔로어의 전압이득을 측정해본 결과, 0.93이 나왔고, 이론값과 3.9%의 오차만 있어 소스 팔로어로서 잘 동작하고 있다고 할 수 있다. 2. 1단 증폭기 1단 증폭기는 등가회로로 생각할 수 있고, 이때 전압이득은 쉽게 구할 수 있다. 실험 결과, 1단 증폭기의 전압이득은 이론값 3.955와 측정값...2025.01.13
-
MOSFET 기본특성 실험 결과 보고서2025.01.021. NMOS 특성 NMOS 실험에서는 가장 낮은 저항 2개를 병렬로 연결하여 입력 측에 사용했으나, 출력 전압이 예상과 달리 측정되었다. Vgs와 Vds를 인가했을 때 NMOS는 차단 영역, 선형 영역(triode 영역), 포화 영역을 거치며 동작하는 것을 확인할 수 있었다. 채널 길이 변조 효과로 인해 선형 영역과 포화 영역에서 Vds와 Id의 관계가 달라지는 것을 관찰할 수 있었다. 2. PMOS 특성 PMOS 실험에서는 가장 낮은 저항 2개를 병렬로 연결하여 입력 측에 사용했으나, 출력 전압이 예상보다 낮아져 파워 서플라이가...2025.01.02
-
전자회로 실험 12. JFET의 특성 실험2025.05.111. JFET의 동작 원리 JFET 소자는 게이트와 소스 사이의 역방향 바이어스 전압의 크기에 의해 드레인 전류를 제어함으로써 드레인단에 증폭된 전압을 얻는 전압제어형 소자이다. 이 게이트 전압을 변화시킴으로써 채널의 폭이 변화하고 그에 따라 전류가 변화하게 된다. 2. JFET의 드레인 특성곡선 실험 결과 V_DS가 3.0V~6.0V사이에서는 I_D가 거의 변하지 않는 것으로 보아, 일정 전류원을 가지는 영역이라고 볼 수 있고, 이러한 점의 전압을 핀치오프 전압이라고 한다. 따라서 핀치오프 전압은 약 3.0V라고 할 수 있다. 3...2025.05.11
-
전자회로실험 A+ 12주차 결과보고서(MOSFET Characteristics)2025.05.101. MOSFET 기본 구조 MOSFET의 기본 구조는 다음과 같습니다. Gate: Source 부분과 Drain 부분의 반도체를 연결시켜주는 Channel을 형성하게 하는 역할, Source: 트랜지스터로 특정 캐리어를 공급해주는 역할, Drain: Source에서 들어온 캐리어들을 채널을 통해 밖으로 이동시키는 역할, Body: Channel을 형성하기 위한 캐리어들을 보충해주는 역할(대부분 접지) 2. MOSFET 작동 원리 MOSFET의 작동 원리는 다음과 같습니다. 1. 전압이 인가되지 않은 상태에서 MOSFET은 동작하지...2025.05.10
-
MOSFET 에너지 밴드2025.05.081. MOSFET 동작 모드 MOSFET은 Gate 전압에 따라 Accumulation, Depletion, Inversion 모드로 동작한다. Accumulation 모드에서는 전류가 흐르지 않고, Depletion 모드에서는 약간의 전류만 흐르며, Inversion 모드에서는 Source에서 Drain으로 전자가 이동하여 전류가 잘 흐른다. MOSFET의 동작 모드는 Gate 전압을 조절하여 변경할 수 있다. 2. MOSFET 동작 영역 MOSFET의 동작 영역은 Gate 전압과 Drain 전압의 조합에 따라 달라진다. Gate...2025.05.08
-
[전자회로실험] 바이어스 해석 결과보고서2025.04.261. 트랜지스터 동작 영역 실험을 통해 트랜지스터의 동작 영역을 파악하였다. 트랜지스터가 능동 영역에서 동작하기 위한 Vbb의 범위를 구하고, 능동 영역에서의 Ic 값을 구하였다. 또한 트랜지스터가 포화 영역에서 동작할 때의 Vce를 구하고 데이터시트 값과 비교하였다. 2. 고정 바이어스 회로 고정 바이어스 회로에서 Vb, Vc, Ic 등의 값을 측정하고 계산하였다. 실험값과 이론값, 시뮬레이션 값 사이에 차이가 있었는데, 이는 실험 과정에서의 오류로 인한 것으로 보인다. 3. 저항 분할 바이어스 회로 저항 분할 바이어스 회로에서도...2025.04.26
-
실험 09_MOSFET 기본 특성 결과보고서2025.04.281. MOSFET 기본 특성 MOSFET은 전계 효과(field effect)를 이용하여 전류가 흐르는 소자이며, 전하를 공급하는 소오스 단자, 전하를 받아들이는 드레인 단자, 전류의 양을 조절하는 게이트 단자, 기판의 역할을 하는 바디 단자로 구성되어 있습니다. 게이트 전압을 바꾸면 드레인에서 소오스로 흐르는 전류가 바뀌면서 증폭기로 동작할 수 있습니다. 이 실험에서는 MOSFET의 기본적인 동작 원리를 살펴보고, 전류-전압 특성 및 동작 영역을 실험을 통하여 확인하였습니다. 2. NMOS와 PMOS의 문턱 전압 차이 NMOS의 ...2025.04.28
-
[전자회로응용] Characteristics of Enhancement MOSFET 결과레포트 (만점)2025.01.281. MOSFET의 I-V curve MOSFET의 I-V curve에서 triode 영역과 saturation 영역을 수식으로 정의하고 물리적 의미를 분석하였습니다. triode 영역에서는 드레인 전류가 선형적으로 증가하며, saturation 영역에서는 드레인 전류가 일정한 값을 유지합니다. 이는 MOSFET의 동작 원리와 관련이 있습니다. 2. 2N7000 소자의 I-V 특성 DC sweep을 이용하여 2N7000 소자의 I-V 특성을 확인하였습니다. 이를 통해 MOSFET의 동작 영역과 특성을 이해할 수 있었습니다. 3. 2...2025.01.28
-
BJT 기본 특성 실험 결과 보고서2025.01.291. NPN형 BJT의 전류-전압 특성 NPN형 BJT는 베이스-에미터 전압 VBE가 약 0.7V 이상일 때 동작을 시작한다. 이때 베이스 전류 IB가 흐르며, 이 작은 전류로 큰 콜렉터 전류 IC를 제어할 수 있다. 콜렉터 전류는 베이스 전류의 증폭된 값으로, IC = βIB의 관계를 따른다. 출력 전압 VO는 공급 전압 VCC에서 콜렉터 저항 RC에 의해 결정되며, VO = VCC - ICRC로 계산된다. 콜렉터 전류가 커지면 출력 전압이 줄어들어 트랜지스터는 출력 전압을 제어할 수 있다. 2. PNP형 BJT의 전류-전압 특성...2025.01.29
-
MOSFET 기본 특성 및 MOSFET 바이어스 회로 실험 결과 보고서2025.01.291. MOSFET 기본 특성 실험 9에서 NMOS의 문턱 전압이 양수이고 PMOS의 문턱 전압이 음수인 이유를 설명하였습니다. NMOS는 소스와 드레인을 n-type을 사용하고 전류를 흐르게 하는 carrier가 전자이므로 채널에 전류가 흐르려면 문턱 전압이 양수여야 합니다. PMOS에서는 소스와 드레인을 p-type을 사용하고 전류를 흐르게 하는 carrier가 hole이므로 채널에 전류가 흐르려면 NMOS의 역전압이 걸려야 하므로 PMOS의 문턱 전압은 음수여야 합니다. 따라서 NMOS를 낮은 전압 쪽에, PMOS를 높은 전압 ...2025.01.29