총 15개
-
의료 실무에서의 설명 가능한 인공지능- 블랙 박스 모델의 이해를 통한 더 나은 신뢰와 수용2025.05.111. 설명 가능한 AI의 개념과 의의 블랙 박스 모델의 문제점과 의료 분야에서 설명 가능한 AI의 중요성을 설명합니다. 블랙 박스 모델은 내부 동작 원리를 해석하기 어려워 의사결정 과정을 설명하고 이해하기 어렵게 만듭니다. 의료 분야에서의 AI는 환자의 건강과 생명에 직결되기 때문에 그 결정 과정을 이해하고 설명할 수 있어야 합니다. 2. 블랙 박스 모델 이해 방법 머신 러닝 모델의 예측 결과를 영향하는 특성들을 파악하고, 의사결정에 어떻게 영향을 미치는지 이해하는 방법과 모델의 내부 동작을 시각화하여 의사결정에 대한 직관적 이해를...2025.05.11
-
학습러닝, 머신러닝 분석 레포트2025.05.051. 학습(learning) 학습(learning)이란 데이터를 이용하여 모델(model)을 학습시키는 과정을 말합니다. 이 과정에서 모델은 입력 데이터(input)와 출력 데이터(output)의 관계를 학습하게 되는데, 이를 통해 새로운 입력 데이터가 주어졌을 때 모델은 예측 결과를 출력할 수 있게 됩니다. 2. 블랙박스(black box) 블랙박스(black box)란 모델이 내부에서 어떠한 일이 일어나는지 알 수 없는 상황을 말합니다. 따라서 모델이 학습하는 과정에서 입력 데이터와 출력 데이터만을 이용하여 내부의 동작 원리를 ...2025.05.05
-
블랙박스실험2025.01.231. 과학적 방법론 실험을 통해 과학적 방법론을 체험하고 실제로 사용할 수 있는 방법을 습득하였다. 가설 설정, 실험 설계, 결과 해석 및 분석 등의 과정을 거치면서 과학적 사고력과 문제 해결 능력을 기를 수 있었다. 2. 블랙박스 실험 밀봉된 상자 안의 물건을 추측하는 블랙박스 실험을 통해 관찰, 정보 수집, 가설 설정, 실험 설계, 테스트, 결과 해석 등의 과학적 방법론을 실제로 적용해볼 수 있었다. 이 과정에서 가설 설정의 중요성, 실험 설계의 정확성, 결과 해석의 필요성 등을 깨달을 수 있었다. 3. 실험 결과 분석 실험 결...2025.01.23
-
설명 가능한 인공지능, XAI (Explainable Artificial Intelligence)2025.05.101. 인공지능 신경망의 동작 인공지능 신경망의 동작은 사람의 뇌와 유사하지만, 내부 동작과 의사 결정 과정을 직접적으로 이해하기 어렵다. 이는 다른 사람의 뇌 안에서 일어나는 생각을 이해하기 어려운 것과 유사하다. 2. XAI (Explainable Artificial Intelligence) XAI는 인공지능 모델의 내부 동작과 의사 결정 과정을 설명 가능하게 만드는 기술을 개발하는 것을 목표로 한다. 이를 통해 모델의 예측에 영향을 미치는 요인을 이해하고 신뢰성을 높일 수 있다. 3. XAI 기술 특성 XAI는 시각화, 중요도 ...2025.05.10
-
LLM(대규모 언어 모형)과 LMM(대규모 멀티모달 모형)의 비교 및 딥러닝과의 관계2025.01.261. LLM(대규모 언어 모형) LLM은 주로 텍스트 데이터를 기반으로 학습된 모델로, 자연어 이해(NLU)와 자연어 생성(NLG)에 강점을 지닌다. 대표적인 예로는 OpenAI의 GPT 시리즈가 있으며, 이들은 방대한 양의 텍스트 데이터를 학습하여 인간과 유사한 수준의 텍스트 생성 능력을 보유하고 있다. LLM은 주로 챗봇, 자동 번역, 텍스트 요약, 감정 분석 등 다양한 언어 처리 작업에 활용된다. 2. LMM(대규모 멀티모달 모형) LMM은 텍스트뿐만 아니라 이미지, 음성, 비디오 등 다양한 형태의 데이터를 동시에 처리할 수 ...2025.01.26
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정 및 충돌방지2025.05.091. 객체 인식 (Object detection) 이미지에서 객체를 찾고 분류하는 프로세스. MATLAB 딥러닝 기법 중 'R-CNN Object Detector'를 이용하여 영상 이미지 인식 방법을 사용한다. 2. R-CNN: Regions with Convolutional Neural Networks R-CNN 프로세스는 Windows 10, MATLAB 2018b, NVIDIA CUDA Tool kit v10.0, NVIDIA GeForce GTX 750 Ti 개발환경에서 진행되었다. 3. 딥러닝 학습 과정 imageDatas...2025.05.09
-
2024년 김영평생육원 경영정보시스템 전체 1등 A+의 만점 받은 과제 _인공지능의 개념과 기술, 활용사례에 대해 조사하시오2025.01.211. 인공지능의 개념 인공지능은 '지능을 기계로 구현한 것'이다. 지능은 문제를 해결할 수 있는 능력으로 정의될 수 있다. 따라서 인공지능은 문제를 해결하기 위해서 스스로 작업을 진행할 수 있는 능력으로 정의할 수 있다. 학계에서 바라보는 인공지능의 진화 단계는 크게 ANI, AGI, ASI 세 가지로 나누어 설명할 수 있다. 2. 인공지능 기술: 기계학습과 딥러닝 인공지능은 컴퓨터에게 데이터를 학습시켜 마치 사람처럼 스스로 의사결정을 할 수 있게 한다. 기계학습은 사람이 특성인자를 선정하는 것이 중요하지만, 딥러닝은 데이터에서 모...2025.01.21
-
초기 질병 감지와 예방을 위한 AI 기반 예측 분석2025.05.111. AI 기반 예측 분석의 개념 AI는 의료 데이터를 분석하여 환자의 건강 상태를 예측하는 예측 분석 기술을 사용합니다. AI 기반 예측 분석은 초기 질병 징후를 식별하여 질병의 조기 감지와 예방에 기여합니다. 2. AI 기반 예측 분석의 잠재적 이점 AI는 환자의 건강 데이터를 분석하여 조기 진단과 치료를 가능케 하며, 개인의 건강 데이터와 유전자 정보를 활용하여 맞춤형 예방 방법을 제안하고, 대량의 의료 데이터를 빠르고 정확하게 분석하여 의사 결정에 도움을 줍니다. 3. AI 기반 예측 분석의 응용 분야 AI는 환자의 의료 기...2025.05.11
-
숨겨진 물리적 변수 발견을 위한 머신 러닝 알고리즘2025.01.161. 머신 러닝 알고리즘 최근 과학의 발전이 점차 복잡한 방향으로 나아가면서, 이를 이해하고 분석하기 위한 방법론에 대한 필요성이 증가하고 있다. 특히 물리학에서는 복잡한 물리적 현상을 설명하기 위해 다양한 변수들을 식별하고 이들 간의 관계를 정의하는 과정이 요구되는데, 이는 굉장히 복잡하고 어려운 작업이다. 이러한 배경 속에서 컬럼비아 대학의 연구진이 개발한 머신 러닝 알고리즘은 동작 관련 영상만을 보고도 관련된 물리적 변수를 발견하고 산출하는 능력을 갖추고 있다. 2. 물리적 변수 발견 이 알고리즘이 뛰어난 점은, 알려진 시스템...2025.01.16
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 분류 인공지능은 인간성이나 지능을 가진 존재나 시스템이 인위적으로 만들어낸 지능을 말한다. 일반적으로 컴퓨터가 인간에 의해 작동될 때 지능을 필요로 하는 업무를 수행하는 과학으로 정의되며, 컴퓨터가 스스로 인식하고 자율적으로 행동하는 것을 의미한다. 인공지능은 약한 인공지능과 강한 인공지능으로 분류된다. 2. 기계학습 및 딥러닝 기술 기계학습은 데이터에서 코드로 지정되지 않은 동작을 기계가 학습하고 실행할 수 있는 알고리즘을 개발하는 연구 분야이다. 딥러닝은 비선형 변환 기법의 조합을 통해 높은 수준의 추상화...2025.01.18
