PLATINUM
PLATINUM 등급의 판매자 자료

[데이터마이닝][데이터마이닝 활용 사례][데이터마이닝 한계점]데이터마이닝의 처리과정, 데이터마이닝의 기술 활용, 데이터마이닝 활용 사례, 데이터마이닝의 한계점, 데이터마이닝의 주의사항에 관한 심층 분석

13 페이지
한컴오피스
최초등록일 2009.02.25 최종저작일 2009.02
13P 미리보기
  [데이터마이닝][데이터마이닝 활용 사례][데이터마이닝 한계점]데이터마이닝의 처리과정, 데이터마이닝의 기술 활용, 데이터마이닝 활용 사례, 데이터마이닝의 한계점, 데이터마이닝의 주의사항에 관한 심층 분석
  • 미리보기

    소개

    데이터마이닝의 처리과정, 데이터마이닝의 기술 활용, 데이터마이닝 활용 사례, 데이터마이닝의 한계점, 데이터마이닝의 주의사항에 관한 심층 분석

    목차

    Ⅰ. 서론

    Ⅱ. 데이터마이닝의 처리과정
    1. 문제 정의 단계
    2. 데이터베이스 구축 단계
    3. Data Mining 단계
    1) Sampling / Selection
    2) 데이터 정제 및 전처리(Data Cleansing / Preprocessing)
    3) 탐색 및 변형 (Transformation / Exploration)
    4) 모형화(Modeling)
    5) 보고 및 가시화 (Reporting / Visualization)
    4. 비즈니스 보고서 작성 단계
    5. 의사 결정 단계
    6. 피드백(Feedback) 단계

    Ⅲ. 데이터마이닝의 기술 활용
    1. 비즈니스 데이터마이닝(Business Data mining)
    2. 웹 텍스트 마이닝(Web Text Mining)
    3. 지식관리시스템 (Knowledge Management System)
    1) Dateware
    2) Sovereign Hill Software, Inc.
    3) Semio
    4) Relevance Technologies,
    4. 검색엔진 (Search Engine)
    1) Northern Light
    2) InFind
    3) Google

    Ⅳ. 데이터마이닝 활용 사례
    1. 사례 1 비지니스 확장
    2. 사례 2 비용 절감
    3. 사례 3 판매 증가 효과와 수익성

    Ⅴ. 데이터마이닝의 한계점

    Ⅵ. 데이터마이닝의 주의사항

    Ⅶ. 결론

    참고문헌

    본문내용

    데이터마이닝은 크게 컴퓨터 과학의 관점, MIS 관점, 통계적 관점으로 나누어 정의할 수 있다. 컴퓨터 과학적인 관점에서는 패턴 인식 기술뿐만 아니라 통계적·수학적 분석 방법을 이용하여 저장된 거대한 자료로부터 우리에게 유익하고 흥미있는 새로운 관계·성향·패턴 등의 다양한 부가가치 정보를 찾아내는 일련의 과정이라고 정의하고 있다. MIS 관점에서는 거대한 데이터베이스 혹은 자료에서 유용한 정보를 추출하는 일련의 과정뿐만 아니라 값진 정보를 사용자가 전문적 지식 없이도 사용할 수 있는 의사결정지원시스템의 개발 과정을 통틀어 데이터마이닝으로 정의하고 있다. 통계적 관점에서는 올바른 의사결정을 지원하기 위한 자료분석(Data analysis) 및 모형 선택(Model selection)으로 정의한다. 여러 서적이나 논문에 의하면 데이터마이닝과 지식 발견(KDD, Knowledge Discovery in Database)이라는 용어를 혼용해서 사용하는 경우가 많다. 개념이 소개되던 초창기에 데이터마이닝이라는 용어는 특히 통계학자, 데이터베이스 연구가, 그리고 기업체에서 많이 사용한 반면, 지식 발견의 경우는 인공 지능이나 전문가 시스템 관련 연구에 주로 등장했다. 그러나 캐나다 몬트리올에서 개최된 지식 발견과 데이터마이닝에 관한 국제 학술대회(The first international conference on knowledge discovery & data mining)에서 지식 발견은 데이터로부터 유용한 정보를 발견하는 프로세스의 전 과정이라고 정의했고, 데이터마이닝은 지식 발견 프로세스 중에서 데이터로부터 정보를 추출하기 위해서 기법을 적용하는 특정 단계라고 제안하

    참고자료

    · ◎ 강현철·박태원·임난희, Data Mining 방법론과 SAS Enterprise Miner, 한국분류학회 발표논문집, 1998
    · ◎ 강현철, 데어터마이닝 : 방법론 및 활용, 자유아카데미, 1999
    · ◎ 김정숙·나종화, 데이터마이닝 기법을 이용한 이동통신 광고 전략, 한국조사연구학회, 2001
    · ◎ 안수산, 데이터마이닝 기법을 활용한 스팸메일 분류 및 예측모형 구축에 관한 연구 : 이화여대 경영 대학원 석사학위논문, 2001
    · ◎ 장남식·장재호·홍성완, 데이터마이닝, 대청미디어, 1999
    · ◎ 조재희·박성진, 데이터 웨어하우징과 OLAP, 대청출판사, 1996
    · ◎ 최종후·한상태·강현철·김은석, AnswerTree를 이용한 데이터마이닝 의사결정나무분석, SPSS 아카데미, 서울, 1998
    · ◎ Berry.M, J, A·Linoff, G춘계학술논문발표대회 논문집, 1997
  • 자료후기

    Ai 리뷰
    이 자료를 통해 새로운 인사이트와 지식을 얻을 수 있었습니다. 내용이 풍성하여 과제 작성에 큰 도움이 되었습니다. 계속해서 좋은 자료를 기대합니다! 감사합니다.
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

함께 구매한 자료도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 03일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:48 오후