• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

서울대학교_물리분석실험_NMR Spectroscopy(2024)

"서울대학교_물리분석실험_NMR Spectroscopy(2024)"에 대한 내용입니다.
6 페이지
어도비 PDF
최초등록일 2024.09.25 최종저작일 2024.04
6P 미리보기
서울대학교_물리분석실험_NMR Spectroscopy(2024)
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 명확성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 고급 NMR 분광학 실험 원리와 실제 데이터 분석 방법 제공
    • 📊 MATLAB과 수학적 모델링을 활용한 실험 데이터 처리 과정 상세 설명
    • 🧪 분자 동역학 연구의 실제 실험 방법론과 데이터 해석 인사이트 제공

    미리보기

    소개

    "서울대학교_물리분석실험_NMR Spectroscopy(2024)"에 대한 내용입니다.

    목차

    1. Abstract
    2. Data & Results
    3. Discussion
    4. Homework
    5. Reference

    본문내용

    이번 실험에서는 NMR spectroscopy의 원리를 이해하고 2D-EXSY NMR을 통해 분자의 cis-trans insomerization reaction의 dynamic 성질을 파악하는 것을 목표로 한다. NMR(nuclear magnetic resonance)은 핵의 세차운동(precession)을 기본 원리로 한다. 원자는 자석과 같은 성질을 가지기 때문에 자기장을 걸어주면 세차운동이 발생한다. 따라 서 핵스핀이 NMR 코일에 전력을 유도하게 되고, 각각 다른 속도로 세차운동하기 때문에 푸리에 변환(Fourier Transform, FT)을 하여 이 신호를 주파수 신호로 바꾼다. 이 주파 수 신호는 chemical shift라고 하며 ppm단위를 갖는다. FT를 사용하면 감도와 해상도가 증가하기 때문에 다양한 차원의 NMR에 사용된다.
    EXSY(exchange spectroscopy) NMR은 10ms~ 10s시간대의 dynamics를 측정하는 NMR로 반응의 time scale이 적절해야 한다. N,N-dimethylacetamide는 공명구조를 가 지고 있기 때문에 cis-trans isomerization이 single bond보다는 느리고 double bond보 다는 느려서 EXSY 방법으로 분석할 수 있는 분자적 특성을 가지고 있다. Mixing time을 주어 이 시간동안에 일어나는 isomerization에 따라 2D-NMR 신호에 기록된다. 0.2s, 0.3s, 0.4s, 0.6s의 mixing time과 298.1K, 303.1K, 308.1K, 313.1K의 온도에서 NMR 신호를 기록하여 각각의 변수에 따라 rate constant가 어떻게 변하는지 계산하였다.

    참고자료

    · Charles L.Perrin, Tammy J.Dwyer, Application of Two-Dimensional NMR to kinetics of Chemical Exchange, Department of Chemistry, University of California, San Diego, California. USA, 1990, p935-967
    · Russell L.Jarek, Rober J. Flesher, and Seung Koo Shin, Kinetics of Internal Rotation of N,N-Dimethylacetamide: a Spin-Saturation Transfer Experiment, Department of Chemistry, University of California, Santa Barbara, USA, 1997
    · Francis P. Gasparro, Nancy H. Kolodny, NMR Determination of the Rotational Barrier in N,N-dimethylacetamide, Department of Bilochemical Sciences, Princeton University, Princeton, New Jersey, USA, 1977
    · Lukas Oberer, Grety Rihs, Gunter Bovermann, Peter von Matt, ARGYRINS, Immunosuppressive Cyclic Petides from Myxobacteria, The journal of antibiotics, D-38124 Braunschweig, Germany, 2002, pp715-721
    · Maysson Ababneh-Khasawneh, Blythe E. Fortier-McGIll, Marzia E, Occhionorelli, Alex D. Bain, Solvent Effects on Chemical Exchange in a Push-Pull Ethylene as Studied by NMR and Electronic Structure Calculations, Department of Chemistry, McMaster University, 1280 Main St.West, Hamilton, Ontario, Canada, 2011
    · Matthew P.Augustine, Gerardo Ochoa, William H. Casey, Steps to Achieiving HIGH-RESOLUTION NMR spectroscopy on soltuions at GPa pressure, Journal of science, USA, 2017, Vol 317
  • AI와 토픽 톺아보기

    • 1. NMR Spectroscopy
      NMR spectroscopy is a powerful analytical technique that provides valuable information about the structure and dynamics of molecules. It is widely used in various fields, including chemistry, biochemistry, and materials science. NMR spectroscopy relies on the magnetic properties of certain atomic nuclei, such as hydrogen (1H) and carbon (13C), to generate signals that can be analyzed to determine the chemical environment and connectivity of atoms within a molecule. The technique is non-destructive, allowing for the study of samples in their native state. NMR spectroscopy has undergone significant advancements in recent years, with the development of higher-field magnets, improved pulse sequences, and advanced data processing algorithms. These advancements have led to increased sensitivity, resolution, and the ability to study increasingly complex molecular systems. NMR spectroscopy is an indispensable tool in various fields, from organic chemistry and biochemistry to materials science and drug discovery, providing insights that are crucial for understanding the structure, function, and behavior of molecules.
    • 2. EXSY NMR
      EXSY (Exchange Spectroscopy) NMR is a powerful technique that allows the investigation of chemical exchange processes in molecules. It is particularly useful for studying dynamic systems, where atoms or functional groups within a molecule undergo reversible exchange reactions, such as conformational changes, tautomerization, or ligand binding events. EXSY NMR works by selectively exciting a specific set of nuclei and then monitoring the transfer of magnetization to other nuclei through the exchange process. By analyzing the resulting cross-peaks in the EXSY spectrum, researchers can obtain information about the rate and mechanism of the exchange process, as well as the connectivity and spatial relationships between the exchanging species. This technique is widely used in fields such as organic chemistry, biochemistry, and materials science, where understanding dynamic processes is crucial for elucidating the structure, function, and behavior of complex molecular systems. The development of advanced EXSY pulse sequences and the increasing availability of high-field NMR spectrometers have further expanded the applications of this technique, making it an indispensable tool for the study of complex molecular systems.
    • 3. Arrhenius Equation
      The Arrhenius equation is a fundamental relationship in chemical kinetics that describes the temperature dependence of reaction rates. It was developed by the Swedish chemist Svante Arrhenius in the late 19th century and has become a cornerstone of our understanding of chemical reactivity. The Arrhenius equation states that the rate constant of a chemical reaction is exponentially dependent on the activation energy of the reaction and the absolute temperature. This relationship is expressed mathematically as k = A * exp(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the universal gas constant, and T is the absolute temperature. The Arrhenius equation provides a simple and powerful way to predict how changes in temperature will affect the rate of a chemical reaction, which is crucial for understanding and optimizing a wide range of chemical processes, from industrial reactions to biological processes. The equation has found widespread applications in fields such as organic chemistry, biochemistry, materials science, and chemical engineering, and its continued use and refinement have been instrumental in advancing our understanding of the fundamental principles governing chemical reactivity.
    • 4. Solvent Effects
      Solvent effects are the influence of the surrounding solvent environment on the properties and behavior of chemical species. The choice of solvent can have a profound impact on the outcome of a chemical reaction, the stability and reactivity of molecules, and the spectroscopic properties of compounds. Solvent effects arise from a variety of intermolecular interactions, such as hydrogen bonding, dipole-dipole interactions, and solvation effects, which can stabilize or destabilize reaction intermediates, transition states, and products. Understanding and predicting solvent effects is crucial for optimizing chemical processes, designing new materials, and interpreting experimental data. Researchers in fields such as organic chemistry, biochemistry, and materials science have devoted significant effort to studying solvent effects, developing models and computational methods to account for these interactions. The ability to accurately predict and control solvent effects has led to advancements in areas like organic synthesis, catalysis, drug design, and the development of new functional materials. Continued research in this area is essential for expanding our understanding of the complex interplay between molecules and their surrounding environment, and for leveraging this knowledge to drive innovation in various scientific and technological domains.
    • 5. Reaction Kinetics
      Reaction kinetics is the study of the rates and mechanisms of chemical reactions, which is fundamental to our understanding of chemical processes and their optimization. The field of reaction kinetics encompasses the investigation of factors that influence the rate of a reaction, such as temperature, pressure, concentration of reactants, and the presence of catalysts or inhibitors. By studying the kinetics of a reaction, researchers can gain insights into the elementary steps involved, the energetics of the process, and the rate-limiting factors that determine the overall reaction rate. This knowledge is crucial for designing efficient chemical processes, predicting the behavior of complex systems, and developing new materials and technologies. Reaction kinetics has applications in a wide range of fields, including organic chemistry, biochemistry, materials science, and chemical engineering. Advances in experimental techniques, such as rapid-mixing methods and time-resolved spectroscopy, as well as the development of sophisticated computational models and simulations, have greatly expanded our ability to study and understand reaction kinetics at an increasingly detailed level. Continued research in this area is essential for addressing challenges in areas like energy conversion, environmental remediation, and the development of new drugs and functional materials, where a deep understanding of reaction kinetics is key to driving innovation and progress.
  • 자료후기

      Ai 리뷰
      이 문서는 NMR 분광법의 기본 원리와 EXSY NMR을 이용한 분자 동역학 분석에 대해 상세히 설명하고 있습니다. 실험 결과를 바탕으로 온도와 mixing time 변화에 따른 반응 속도 상수 및 활성화 에너지 장벽을 계산하였으며, 이를 문헌값과 비교하여 분석하고 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 31일 수요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    8:39 오후