• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료
non-ai
판매자가 AI를 사용하지 않은 독창적인 자료

[태양전지실험] Study of Organic and Inorganic Solar Cells

태양전지실험 (Final report for Photovoltaic experiment, PHY589) 기말대체 레포트입니다. (A+ 받음)
40 페이지
워드
최초등록일 2020.11.16 최종저작일 2014.08
40P 미리보기
[태양전지실험] Study of Organic and Inorganic Solar Cells
  • 미리보기

    소개

    태양전지실험 (Final report for Photovoltaic experiment, PHY589) 기말대체 레포트입니다. (A+ 받음)

    목차

    Abstract

    Chapter 1. Introduction
    1.1. Solar energy and photovoltaics
    1.2. Principle of solar cells operation
    1.3. Electrical characteristics of solar cells
    1.4. Inorganic PIN solar cells
    1.5. Organic solar cells

    Chapter 2. Equipment
    2.1. Fabrication equipment for inorganic PIN solar cells
    2.1.1. Plasma Enhanced Chemical Vapor Deposition (PECVD)
    2.1.2. Plasma sputtering
    2.1.3. Thermal evaporator
    2.2. Fabrication equipment for organic solar cells
    2.2.1. Spin coater
    2.3. Measurement equipment
    2.3.1. Dark J-V measurement
    2.3.2. Photo J-V measurement
    2.3.3. External Quantum Efficiency (EQE) measurement
    2.3.4. Ellipsometry
    2.3.5. Profilometer
    2.3.6. UV-Vis spectrometer

    Chapter 3. Result and discussion
    3.1. Inorganic PIN solar cells
    3.1.1. Device structures
    3.1.2. Results and data analysis
    3.2. Organic solar cells
    3.2.1. Device structures
    3.2.2. Results and data analysis

    Chapter 4. Conclusions and perspectives
    1. Acknowledgement
    2. Bibliography

    본문내용

    The objective of this report is to generally understand the fabrication process and the characterization method of the inorganic solar cells and the organic solar cells. The PIN device is fabricated for the inorganic solar cells and P3HT:PCBM blend is used for the organic solar cells. The characterization process is done by various tools.
    In the beginning of this course, we understood the basic fundamentals and methods of characterization process. After that, we fabricated and characterized those devices. For the PIN inorganic devices, we used the ZnO as the transparent conductive oxide (TCO) with the different contact materials of indium tin oxide (ITO) and Al, respectively. For the organic devices, we used the P3HT:PCBM and P3HT:PCBM with the special additive as the active layers, respectively. Finally, we characterized our devices optically (ellipsometry), physically (profilometer), and electrically (dark/photo J-V characteristics, external quantum efficiency, EQE).

    참고자료

    · P. Roca i Cabarrocas, S. Hamma, S. N. Sharma, G. Viera, E. Bertran, and J. Costa, 1998. Nanoparticle formation in low-pressure silane plasmas: bridging the gap between a-Si:H and μc-Si films. J. Non-Cryst. Solids, Vol. 227-230, pp. 871-875.
    · P. Roca i Cabarrocas, Th. Nguyen-Tran, Y. Djeridane, A. Abramov, E. Johnson and G. Patriarche, J. Phys. D: Appl. Phys. 40, 2258 (2007).
    · K.H. Kim, 2012. Hydrogenated polymorphous silicon: establishing the link between hydrogen microstructure and irreversible solar cell kinetics during light soaking. pastel-00747463, version 1 - 31 Oct 2012. Doctoral thesis in Physics.
    · Sanghyuk YOO and Jungho Kim, 2014, Effect of the additional anode layers on the absorption enhancement characteristic of plasmonic organic solar cells. Jpn. J. Appl. Phys. 53, 122302.
    · J. Bailat, et al., Recent developments of high-efficiency micromorph tandem solar cells in KAI-M PECVD reactors, in: Proceedings of the 25th EU PVSEC/5th WCPEC, 6–10 September 2010, Valencia, Spain, pp. 2720-2723.
    · Y. Hishikawa, Y. Imura and T. Oshiro, 2000. Irradiance dependence and translation of the I-V characteristics of crystalline silicon solar cells, Proc. 28th IEEE Photovoltaic Specialists Conf., Anchorage, pp. 1464-1467.
    · J.E. Philips, J. Titus and D. Hofmann, 1997. Determining the voltage dependence of the light generated current in CuInSe2-based solar cells using I-V measurements made at different light intensities, Proc. 26th IEEE Photovoltaic Specialists Conf., Anaheim, pp. 463-466.
    · S.S. Hegedus, 1997. Current-voltage analysis of a-Si and a-SiGe solar cells including voltage-dependent photocurrent collection, Prog. Photovolt: Res. Appl., Vol. 5, pp. 151-168.
    · J. Merten, J. M. Asensi, C. Voz, A. V. Shah, R. Platz and J. Andreu, 1998. Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. IEEE Transactions on electron devices, Vol. 45, N. 2, pp. 423-429.
    · J.H. Werner and R.B. Bergmann, 2001. Crystalline Silicon Thin Film Solar Cells. Tech. Digest Int. PVSEC-12, Jeju, pp. 69-72.
    · C.R. Wronski, B. Abeles, T. Tiedje and G.D. Cody, 1982. Recombination centers in phosphorous doped hydrogenated amorphous silicon. Solid State Communications, Vol. 44, pp. 1423-1426.
    · R.J. Koval, J.M. Pearce, A.S. Ferlauto, P.I. Rovira, R.W. Collins and C.R. Wronski, 2000. The Role of Phase Transition in Protocrystalline Si:H on the Performance their of Solar Cells. Proc. 28th IEEE Photovoltaic Specialists Conf. Anchorage, pp. 750-753.
    · J. Koh, Y. Lee, H. Fujiwara, C.R. Wronski and R.W. Collins, 1998. Optimization of hydrogenated amorphous silicon p-i-n solar cells with two-step I layers guided by real-time spectroscopic ellipsometry. Appl. Phys. Lett., Vol. 73, pp. 1526-1528.
    · H. Sakai, T. Yoshida, S. Fujikake, T. Hama and Y. Ichikawa, 1990. Effect of p/i interface layer on dark J-V characteristics and Voc in p-i-n a-Si solar cells. J. Appl. Phys., Vol. 67, pp. 3494-3499
    · M. Hack and M. Shur, 1986. Limitation to open circuit voltage of amorphous silicon solar cells. Appl. Phys. Lett., Vol. 49, pp. 1432-1434.
    · R. Crandall and E.A. Schiff, 1985. The correlation of Open Circuit Voltage with Bandgap in Amorphous Silicon-based p-i-n Solar cell. AIP Conference Proceedings, Tempe, AZ, pp. 481-486.
    · E. Yablonovitch and G.D. Cody, 1982. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev., Vol. 29, pp. 300-305.
    · H. Deckman, C.R. Wronski and E. Yablonovitch, 1984. Optical enhancement of solar cells. Proc. 17th IEEE Photovoltaic Specialists Conf., Kissimmee, pp. 955-960.
    · L. Jiao, H. Liu, S. Semoushikina, Y. Lee and C.R. Wronski, 1996. Initial, rapid light induced changes in hydrogenated amorphous silicon materials and solar cell structures: the effect of charged defects. Appl. Phys. Lett., Vol. 69, pp. 3713-3715.
    · M. Gunes and C.R. Wronski, 1997. Differences in the densities of charged defect states and kinetics of Staebler-Wronski in undoped (non-intrinsic) hydrogenated amorphous silicon. J. Appl. Phys., Vol. 81, pp. 3526-3536.
    · Z. Lu, H. Jiao, R. Koval, R.W. Collins and C.R. Wronski, 1999. Characteristics of different thickness a-Si:H/metal Schottky barrier cell structures – results and analysis. Mat. Res. Soc. Symp. Proc., Vol. 557, pp. 785-790.
    · C.R. Wronski, Z. Lu, L. Jiao and Y Lee, 1997. An approach to self consistent analysis of a-Si:H material and p-i-n solar cell properties. Proc. 26th IEEE Photovoltaic Specialists Conf., Anaheim, pp. 587-590.
    · R.J. Koval, J.M. Pearce, A.S. Ferlauto, R.W. Collins and C.R. Wronski, 2001 Evolution of the mobility gap with thickness in hydrogen-diluted intrinsic Si:H materials in the phase transition region and its effect on p-i-n solar cell characteristics. Mat. Res. Soc. Proc., Vol. 664, p.A16.4.
    · Y. Lee, A.S. Ferlauto, Z. Lu, J. Koh, H. Fujiwara, R.W. Collins and C.R. Wronski, 1998. Enhancement of stable open circuit voltage in a-Si:H p-i-n solar cell by hydrogen dilution of p/I interface regions. Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion, Vienna, pp. 940-943.
    · D.L. Staebler and C.R. Wronski, 1977. Reversible conductivity change in discharge produced amorphous silicon. Appl. Phys. Lett., Vol. 31, pp. 292-294.
    · C.R. Wronski, 1984. The Staebler-Wronski Effect. Semiconductors and Semimetals, Vol. 21C, pp. 347-373.
    · H. Fritzsche, 1997. Search for explaining the Staebler-Wronski effect. Mat. Res. Soc. Symp. Proc., Vol. 467, pp. 19-31.
    · M. Stutzmann, 1997. Microscopic aspects of the Staebler-Wronski effect. Mat. Res. Soc. Symp. Proc., Vol. 467, pp. 37-48.
    · C.R. Wronski, 1997. The light-induced changes in a-Si:H materials and solar cells – where we are now. Mat. Res. Soc. Symp. Proc., Vol. 467, pp. 7-17.
    · A. Chowdhury, S. Mukhopadhyay and S. Ray, 2009. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation. Solar Energy Material & Solar cells, Vol. 93, pp. 597-603.
    · M. Stutzmann, W.B. Jackson and C.C Tasi, 1985. Light induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys. Rev. B, Vol. 32(1), pp. 23-47.
    · C.R. Wronski, M. Gunes and T.J. McMahon, 1994. Charged defect states in intrinsic hydrogenated amorphous silicon. J. Appl. Phys., Vol. 76(4), pp. 2260-2263.
    · J. Burdick and T. Glatfelter, 1985. Spectral response and I-V measurement of tandem amorphous-silicon alloy solar cells. Solar Cell, Vol. 18, pp. 301-314.
    · Méndez-Pinzón Henry Alberto, Pardo-Pardo Diana Rocío, Cuéllar-Alvarado Juan Pablo, Salcedo-Reyes Juan Carlos, Vera Ricardo, Páez-Sierra Beynor Antonio, 2010, Analysis of the current-voltage characteristics of polymer-based organic light-emitting diodes (OLEDs) deposited by spin coating. Univ. Sci. vol.15, No.1, pp. 68 - 76.
    · Yunzhang Lu, Clement Alexander, Zhengguo Xiao, Yongbo Yuan, Runyu Zhang and Jinsong Huang, 2012, Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability. Nanotechnolohy 23, 344007.
    · Hwajeong Kim, Minjung Shin and Youngkyoo Kim, 2008, Influence of thermal annealing on the deformation of a lithium fluoride nanolayer in polymer : fullerene solar cells. EPL 84, 58002.
    · Christoph J. Brabec, Sean E. Shaheen, Christoph Winder, and N. Serdar Sariciftc, 2002, Effect of LiFÕmetal electrodes on the performance of plastic solar cells. Appl. Phys. Lett., Vol. 80, No. 7.
    · http://www.keison.co.uk/jenway_6800spectrophotometer.shtml
    · http://fr.wikipedia.org/wiki/Joule
    · http://www.upc.edu/sct/documents_equipament/d_81_id-399.pdf
    · http://fr.wikipedia.org/wiki/Constante_de_Planck
    · https://nanoequipment.wordpress.com/2011/03/08/spin-coater/
    · http://www.icmm.csic.es/fis/english/evaporacion_resistencia.html
    · http://www.koreavac.co.kr/new/kor/html/product/index.php?a=2&b=b&c=a
    · http://en.wikipedia.org/wiki/Plasma-enhanced_chemical_vapor_deposition
    · http://www.esrf.eu/news/spotlight/spotlight132/index_html
    · http://en.wikipedia.org/wiki/Organic_solar_cell
  • 자료후기

      Ai 리뷰
      지식판매자가 등록한 자료는 과제에 적용할 수 있는 유용한 내용이 많아, 큰 도움이 되었습니다. 앞으로도 많은 도움을 받을 수 있기를 기대합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    • 콘크리트 마켓 시사회
    • 전문가요청 배너
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 11월 25일 화요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    8:32 오후