BRONZE
BRONZE 등급의 판매자 자료

IRIS data 분류를 위한 신경망 패턴인식기의 설계

신경망, PCA, LDA 알고리듬을 적용하여 IRIS data를 분류한 결과 입니다.
26 페이지
한컴오피스
최초등록일 2011.12.08 최종저작일 2002.08
26P 미리보기
IRIS data 분류를 위한 신경망 패턴인식기의 설계
  • 미리보기

    소개

    신경망, PCA, LDA 알고리듬을 적용하여 IRIS data를 분류한 결과 입니다.

    목차

    신경망을 사용하여 IRIS data를 분류하는 Classifier를 설계하였다.
    신경망은 1943년 McCulloch 과 Pitts에 의해 그 개념이 소개되었으며, Rosenblatt이 1957년 퍼셉트론이라는 최초의 신경망 모델을 발표하였다. 그러나 Rosenblatt의 퍼셉트론의 경우 발표 당시에는 매우 큰 관심을 끌었으나, XOR 함수와 같이 단순한 비선형 분리 문제도 풀 수 없는 것을 밝혀졌다. 그 후 1980년대 들어서 한 개 이상의 은닉층 뉴런을 가지는 Multi _badtags Perceptron 모델이 제안되고, 백프로퍼게이션(back-propagation) 학습 알고리즘을 사용함으로써 선형 분리 문제뿐 만 아니라 여러 가지 비선형 문제들을 해결할 수 있는 계기를 마련하였다. back-propagation 학습 알고리즘은 오차를 정정하는 규칙으로서, 입력에 대해 원하는 반응과 실제로 얻어진 것들에 대한 차이를 줄여 나가는 것이다.
    현재 신경망은 다양한 관점에서 연구가 되고 있으며, back-propagation알고리즘 뿐만 아니라 여러 가지 다양한 학습 알고리즘들을 이용하여, 제어, 통신, 반도체, 로보틱스 등의 여러 분야에서 사용하고 있다.
    본 보고서에서는 입력층 뉴런의 개수 4개(혹은 2개), 은닉층 뉴런의 개수 (5개), 출력층 뉴런의 개수 3개를 갖는 Multi _badtags Perceptron구조하에, Back Propagation algorithm, Conjugate gradient등의 학습 알고리즘을 이용하여 주어진 IRIS data를 분류하는 분류기를 설계하였다.
    IRIS data의 4개의 Attribute를 모두 신경망에 입력시켜서 back propagation과 conjugate gradient method를 이용하여 data를 분류, PCA와 LDA를 이용하여 선택된 input feature에를 이용한 분류, relevant input 2 개를 이용한 분류에 관한 실험을 실시하였으며, 150개의 IRIS data 중에서 임의로 135개의 Training data를 뽑아서 신경망을 학습 시켰고, 학습 결과를 미리 준비된 15개의 Test data를 이용하여 검증하여 보았다.

    본문내용

    Design of NN Classifier for IRIS Data Classification

    I. Goal of term project

    신경망을 사용하여 IRIS data를 분류하는 Classifier를 설계하였다.
    신경망은 1943년 McCulloch 과 Pitts에 의해 그 개념이 소개되었으며, Rosenblatt이 1957년 퍼셉트론이라는 최초의 신경망 모델을 발표하였다. 그러나 Rosenblatt의 퍼셉트론의 경우 발표 당시에는 매우 큰 관심을 끌었으나, XOR 함수와 같이 단순한 비선형 분리 문제도 풀 수 없는 것을 밝혀졌다. 그 후 1980년대 들어서 한 개 이상의 은닉층 뉴런을 가지는 Multi layer Perceptron 모델이 제안되고, 백프로퍼게이션(back-propagation) 학습 알고리즘을 사용함으로써 선형 분리 문제뿐 만 아니라 여러 가지 비선형 문제들을 해결할 수 있는 계기를 마련하였다. back-propagation 학습 알고리즘은 오차를 정정하는 규칙으로서, 입력에 대해 원하는 반응과 실제로 얻어진 것들에 대한 차이를 줄여 나가는 것이다.
    현재 신경망은 다양한 관점에서 연구가 되고 있으며, back-propagation알고리즘 뿐만 아니라 여러 가지 다양한 학습 알고리즘들을 이용하여, 제어, 통신, 반도체, 로보틱스 등의 여러 분야에서 사용하고 있다.
    본 보고서에서는 입력층 뉴런의 개수 4개(혹은 2개), 은닉층 뉴런의 개수 (5개), 출력층 뉴런의 개수 3개를 갖는 Multi layer Perceptron구조하에, Back Propagation algorithm, Conjugate gradient등의 학습 알고리즘을 이용하여 주어진 IRIS data를 분류하는 분류기를 설계하였다.
    IRIS data의 4개의 Attribute를 모두 신경망에 입력시켜서 back propagation과 conjugate gradient method를 이용하여 data를 분류, PCA와 LDA를 이용하여 선택된 input

    참고자료

    · 없음
  • 자료후기

    Ai 리뷰
    지식판매자의 이 자료 덕분에 ,복잡했던 과제를 체계적으로 정리하고, 실질적인 결과를 얻을 수 있었습니다. 완벽한 자료였습니다. 매우 추천합니다.
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 19일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:17 오전