• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법 (Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF)

9 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2022.01
9P 미리보기
LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🧠 지속적 학습 환경에서 망각 문제를 혁신적으로 해결하는 방법론 제시
    • 📊 데이터 특징에 따라 가중치를 적응적으로 조절하는 독창적인 접근법
    • 🔬 실험적 검증을 통해 성능 향상을 구체적인 수치로 입증

    미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 1호 / 15 ~ 23페이지
    · 저자명 : 박성현, 강석훈

    초록

    지속적 학습 환경을 위한 학습 방법 중 LwF(Learning without Forgetting)는 정규화 강도가 고정되어 있어 다양한 데이터가 들어오는 환경에서 성능이 하락 할 수 있다. 본 논문에서는 학습하려는 데이터의 특징을 파악하여 가중치를 가변적으로 설정할 수 있는 방법을 제안하고, 실험으로 성능을 검증한다. 상관 관계와 복잡도를 이용하여 적응적으로 가중치를 적용하도록 하였다. 평가를 위해 다양한 데이터를 가진 태스크가 들어오는 시나리오를 구성하여 실험을 진행하였고, 실험 결과 새로운 태스크의 정확도가 최대 5%, 이전 태스크의 정확도가 최대 11% 상승하였다. 또한, 본 논문에서 제안한 알고리즘으로 구한 적응적 가중치 값은, 각 실험 시나리오마다 반복적 실험에 의해, 수동으로 계산한 최적 가중치 값에 접근한 것을 알 수 있었다. 상관 계수 값은 0.739 이었고, 전체적으로 평균 태스크 정확도가 상승하였다. 본 논문의 방법은, 새로운 태스크를 학습할 때마다 적절한 람다 값을 적응적으로 설정하였으며, 본 논문에서 제시한 여러 가지 시나리오에서 최적의 결과값을 도출하고 있다는 것을 알 수 있다.

    영어초록

    Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:57 오전