• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로 (Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer)

19 페이지
기타파일
최초등록일 2025.07.07 최종저작일 2021.10
19P 미리보기
정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🛰️ 첨단 위성 기술을 활용한 혁신적인 강우 강도 추정 방법론 제시
    • 🔬 기계학습(랜덤 포레스트) 기반의 정량적 모델링 접근법 소개
    • 📊 기존 강우 산출물 대비 높은 성능과 정확도 입증

    미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 37권 / 5호 / 1405 ~ 1423페이지
    · 저자명 : 신예지, 한대현, 임정호

    초록

    강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager (AHI) 수증기 채널(6.7 μm), 적외 채널(10.8 μm)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean- Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.

    영어초록

    Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellitebased quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 μm), infrared channel (10.8 μm), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the ZR relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:26 오후