• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

과적단속용 WIM 시스템의 이차적 검측영향인자 분석 (Analysis of Secondary Influencing Factors for the WIM System Used in Overload Enforcement)

11 페이지
기타파일
최초등록일 2025.07.06 최종저작일 2023.08
11P 미리보기
과적단속용 WIM 시스템의 이차적 검측영향인자 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국도로학회
    · 수록지 정보 : 한국도로학회논문집 / 25권 / 4호 / 25 ~ 35페이지
    · 저자명 : 이동해, 이종석, 조재우, 김종우, 김태상

    초록

    PURPOSES : In this study, we aim to broaden the understanding of the factors influencing the accuracy of WIM systems for overload enforcement. Particularly, we explored the proportions and causes of secondary influencing factors (driving path, vehicle class, and acceleration), which have been relatively less studied and reduced the accuracy of the WIM system.
    METHODS : Overload enforcement data were recorded by the WIM system, and enforcement officers were gathered. The ratios of each data point, which are the relative errors, are used to estimate the accuracy of the WIM system. These relative errors were classified into four driving-path groups, four vehicle-class groups, and three acceleration groups. The change in the accuracy of the WIM system caused by each influencing factor was analyzed by comparing the difference in the average relative error between the classified groups. Analysis of variance (ANOVA) and Welch's ANOVA were used to determine significant differences between groups.
    RESULTS : Vehicles departing from a normal driving path make it difficult for the GVW compensation algorithm of the WIM system to operate properly. For these abnormal paths, the standard deviation of the average GVW relative error was 22%. There was no specific trend in the difference in accuracy by vehicle class. However, we found that the rear axle and retractable axle were the main causes of the reduced GVW accuracy in each vehicle class. The average GVW relative error remained the same regardless of the acceleration, but the average FAW relative error of the accelerated vehicle was approximately 2.5% lower than that of the unaccelerated vehicle.
    CONCLUSIONS : An abnormal driving path, lifting of a retractable axle, and rapid acceleration (or deceleration) reduce the accuracy of WIM systems. Intelligent transportation systems, such as traffic signals, telematics devices, and applications that induce desirable driving are required for effective overload enforcement. Additionally, it is necessary to smoothen the road pavement to minimize the dynamic effects on the rear axle.

    영어초록

    PURPOSES : In this study, we aim to broaden the understanding of the factors influencing the accuracy of WIM systems for overload enforcement. Particularly, we explored the proportions and causes of secondary influencing factors (driving path, vehicle class, and acceleration), which have been relatively less studied and reduced the accuracy of the WIM system.
    METHODS : Overload enforcement data were recorded by the WIM system, and enforcement officers were gathered. The ratios of each data point, which are the relative errors, are used to estimate the accuracy of the WIM system. These relative errors were classified into four driving-path groups, four vehicle-class groups, and three acceleration groups. The change in the accuracy of the WIM system caused by each influencing factor was analyzed by comparing the difference in the average relative error between the classified groups. Analysis of variance (ANOVA) and Welch's ANOVA were used to determine significant differences between groups.
    RESULTS : Vehicles departing from a normal driving path make it difficult for the GVW compensation algorithm of the WIM system to operate properly. For these abnormal paths, the standard deviation of the average GVW relative error was 22%. There was no specific trend in the difference in accuracy by vehicle class. However, we found that the rear axle and retractable axle were the main causes of the reduced GVW accuracy in each vehicle class. The average GVW relative error remained the same regardless of the acceleration, but the average FAW relative error of the accelerated vehicle was approximately 2.5% lower than that of the unaccelerated vehicle.
    CONCLUSIONS : An abnormal driving path, lifting of a retractable axle, and rapid acceleration (or deceleration) reduce the accuracy of WIM systems. Intelligent transportation systems, such as traffic signals, telematics devices, and applications that induce desirable driving are required for effective overload enforcement. Additionally, it is necessary to smoothen the road pavement to minimize the dynamic effects on the rear axle.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:23 오전