PARTNER
검증된 파트너 제휴사 자료

로버스트주성분회귀에서 최적의 주성분선정을 위한 기준 (A Criterion for the Selection of Principal Components in the Robust Principal Component Regression)

10 페이지
기타파일
최초등록일 2025.06.30 최종저작일 2011.11
10P 미리보기
로버스트주성분회귀에서 최적의 주성분선정을 위한 기준
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : Communications for Statistical Applications and Methods / 18권 / 6호 / 761 ~ 770페이지
    · 저자명 : 김부용

    초록

    회귀모형에 연관성이 높은 설명변수들이 포함되면 다중공선성의 문제가 야기되며, 동시에 자료에 회귀이상점들이 포함되면 최소자승추정량에 바탕을 둔 제반 통계적 추론은 심각한 결함을 갖게 된다. 이러한 현상들은 데이터마이닝 분야에서 많이 볼 수 있는데, 본 논문에서는 두 가지 문제를 동시에 해결하기 위한 방안으로서 로버스트주성분회귀를 제안하였다. 특히 최적의 주성분을 선정하기 위한 새로운 기준을 개발하였는데, 설명변수들의 표본공분산 대신에 MVE-추정량을 기반으로 하였으며, 고유치가 아니라 상태지수의 크기에 바탕을 둔 선정기준을 제안하였다. 그리고 주성분모형에서의 추정을 위하여 회귀이상점에 대해 로버스트한 LTS-추정을 도입하였다. 제안된 선정기준이 기존의 기준들보다 다중공선성과 이상점이 유발하는 문제들을 잘 해결할 수 있음을 모의실험을 통하여 확인하였다.

    영어초록

    Robust principal components regression is suggested to deal with both the multicollinearity and outlier problem. A main aspect of the robust principal components regression is the selection of an optimal set of principal components. Instead of the eigenvalue of the sample covariance matrix, a selection criterion is developed based on the condition index of the minimum volume ellipsoid estimator which is highly robust against leverage points. In addition, the least trimmed squares estimation is employed to cope with regression outliers. Monte Carlo simulation results indicate that the proposed criterion is superior to existing ones.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Communications for Statistical Applications and Methods”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:44 오전