• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델 (A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm)

13 페이지
기타파일
최초등록일 2025.06.26 최종저작일 2024.02
13P 미리보기
SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 25권 / 1호 / 109 ~ 121페이지
    · 저자명 : 박소향, 김광훈

    초록

    섬유, 자동차와 같은 여러 제조 공정에서 설비가 고장이 나 멈추게 되면 기계가 작동하지 않게 되고 이는 기업의 시간적, 금전적손실로 이어진다. 따라서 설비의 고장이 발생하기 전, 고장을 예측하여 정비할 수 있도록 설비의 이상을 사전에 탐지하는 것이 중요하다. 대부분의 설비 고장 원인은 설비의 필수 부품인 베어링의 고장으로, 베어링의 고장을 진단하는 것은 설비예지보전 연구의 핵심이기도 하다. 본 논문에서는 베어링의 진동 신호를 분석하여 SWT-SVD 전처리 알고리즘을 제안하고 이를 시계열 이상탐지 모델 네트워크 중 하나인 어노멀리 트랜스포머에 적용하여 베어링 이상탐지 모델을 구현한다. 제조공정의 베어링 진동신호는 실시간으로 센서값들의 이력이 작성되어 노이즈가 존재하므로, 이를 줄이기 위해 본 연구에서는 정상 웨이블릿 변환(Stationary Wavelet Transform)을사용하여 주파수 성분을 추출하고, 특이값 분해(Singular Value Decomposition) 알고리즘을 통해 유의미한 특징들을 추출하는 전처리를 진행한다. 제안하는 SWT-SVD 전처리 방법을 적용한 베어링 이상탐지 모델 실험을 위해 IEEE PHM학회에서 제공하는 PHM-2012- Challenge 데이터 세트를 활용하였으며, 실험 결과는 0.98의 정확도와 0.97의 F1-Score로 우수한 성능을 보였다. 추가로, 성능 향상을입증하기 위해 선행 연구들과 성능 비교를 진행한다. 비교 실험을 통해 제안한 전처리 방법이 기존의 전처리보다 높은 성능을 보임을 확인하였다.

    영어초록

    In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97.
    Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:00 오후