PARTNER
검증된 파트너 제휴사 자료

장기간 대기오염 및 기상자료를 이용한 유효강수세정 기여율 회귀모델의 개발 및 유효성 검사 (Development and Validation Test of Effective Wet Scavenging Contribution Regression Models Using Long-term Air Monitoring)

10 페이지
기타파일
최초등록일 2025.06.19 최종저작일 2013.06
10P 미리보기
장기간 대기오염 및 기상자료를 이용한 유효강수세정 기여율 회귀모델의 개발 및 유효성 검사
  • 미리보기

    서지정보

    · 발행기관 : 한국대기환경학회
    · 수록지 정보 : 한국대기환경학회지 / 29권 / 3호 / 297 ~ 306페이지
    · 저자명 : 임득용, 김동술, 이태정

    초록

    This study used long-term air and weather data from 2000 to 2009 as raw data sets to develop regression models in order to estimate precipitation scavenging contributions of ambient PM10 and NO2 in Korea. The data were initially analyzed to calculate scavenging ratio (SR), defined as the removal efficiency for PM10 and NO2 by actual precipitation. Next, the effective scavenging contributions (ESC) with considering precipitation probability density were calculated for each sector of precipitation range. Finally, the empirical regression equations for the two air pollutants were separately developed, and then the equations were applied to test the model validity with the raw data sets of 2010 and 2011, which were not involved in the modeling process. The results showed that the predicted PM10 ESC by the model was 23.8% and the observed PM10 ESCs were 23.6% in 2010 and 24.0% in 2011, respectively.
    As for NO2, the predicted ESC by the model was 16.3% and the observed ESCs were 16.4% in 2010 and 16.6% in 2011, respectively. Thus the developed regression models fitted quite well the actual scavenging contribution for both ambient PM10 and NO2. The models can then be used as a good tool to quantitatively apportion the natural and anthropogenic sink contribution in Korea. However, to apply the models for far future, the precipitation probability density function (PPDF) as a weather variable in the model equations must be renewed periodically to increase prediction accuracy and reliability. Further, in order to apply the models in a specific local area, it is recommended that the long-term oriented local PPDF should be inserted in the models.

    영어초록

    This study used long-term air and weather data from 2000 to 2009 as raw data sets to develop regression models in order to estimate precipitation scavenging contributions of ambient PM10 and NO2 in Korea. The data were initially analyzed to calculate scavenging ratio (SR), defined as the removal efficiency for PM10 and NO2 by actual precipitation. Next, the effective scavenging contributions (ESC) with considering precipitation probability density were calculated for each sector of precipitation range. Finally, the empirical regression equations for the two air pollutants were separately developed, and then the equations were applied to test the model validity with the raw data sets of 2010 and 2011, which were not involved in the modeling process. The results showed that the predicted PM10 ESC by the model was 23.8% and the observed PM10 ESCs were 23.6% in 2010 and 24.0% in 2011, respectively.
    As for NO2, the predicted ESC by the model was 16.3% and the observed ESCs were 16.4% in 2010 and 16.6% in 2011, respectively. Thus the developed regression models fitted quite well the actual scavenging contribution for both ambient PM10 and NO2. The models can then be used as a good tool to quantitatively apportion the natural and anthropogenic sink contribution in Korea. However, to apply the models for far future, the precipitation probability density function (PPDF) as a weather variable in the model equations must be renewed periodically to increase prediction accuracy and reliability. Further, in order to apply the models in a specific local area, it is recommended that the long-term oriented local PPDF should be inserted in the models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국대기환경학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 01일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:40 오후