• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구 (A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification)

12 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2023.04
12P 미리보기
객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 39권 / 2호 / 157 ~ 168페이지
    · 저자명 : 예철수

    초록

    고해상도 원격탐사 영상을 이용하여 지표면을 모니터링 하기 위해서 영상 분할 및 감독 기반의 분류 기법이 널리 사용된다. 다양한 객체를 분류하기 위해서는 각 객체에 해당하는 클래스를 정의하고 각 클래스에 속하는 샘플들을 선택하는 과정이 필요하다. 클래스 샘플을 추출하는 기존의 방법은 각 클래스 별로 유사한 밝기값 특성을 가지는 충분한 개수의 샘플을 선택해야 한다. 이 과정은 사용자의 육안 식별에 의존하는 과정으로많은 시간이 소요되며 사용자에 따라 추출되는 클래스의 대표 샘플들이 달라질 가능성이 높고 결과적으로 분류 성능이 클래스 샘플 추출 결과에 크게 영향을 받게 된다. 본 연구에서는 클래스 샘플 추출 시 히스토그램 역투영 기법을 적용하여 샘플 추출 시 사용자의 개입을 최소화하고 클래스에 속하는 샘플들의 밝기값 특성이 일관성을 가지는 영상 분류 기법을 제안한다. 제안한 히스토그램 역투영을 이용한 분류 기법은 차세대중형위성1호(Compact Advanced Satellite 500-1) 영상의 색상 서브채널을 이용한 분류 실험과 원영상을 이용한 분류 실험에서 히스토그램 역투영을 사용하지 않은 기법에 비해 모두 향상된 분류 정확도를 보였다.

    영어초록

    Image segmentation and supervised classification techniques are widely used to monitorthe ground surface using high-resolution remote sensing images. In order to classify various objects, aprocess of defining a class corresponding to each object and selecting samples belonging to each classis required. Existing methods for extracting class samples should select a sufficient number of sampleshaving similar intensity characteristics for each class. This process depends on the user’s visualidentification and takes a lot of time. Representative samples of the class extracted are likely to varydepending on the user, and as a result, the classification performance is greatly affected by the classsample extraction result. In this study, we propose an image classification technique that minimizesuser intervention when extracting class samples by applying the histogram back-projection techniqueand has consistent intensity characteristics of samples belonging to classes. The proposed classificationtechnique using histogram back-projection showed improved classification accuracy in both theexperiment using hue subchannels of the hue saturation value transformed image from CompactAdvanced Satellite 500-1 imagery and the experiment using the original image compared to thetechnique that did not use histogram back-projection.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:49 오전