• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신 (Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique)

11 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2017.08
11P 미리보기
점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 13권 / 4호 / 29 ~ 39페이지
    · 저자명 : 김철표, 노상욱

    초록

    다양한 전자전 상황에서 단위 위협체에 대하여 전자전 모델링과 시뮬레이션을 수행할 수 있는 통합 전자전 시뮬레이터의 개발 필요성이 대두되고 있다. 본 논문에서는 전자전 상황에서 전자정보 수집신호의 변수를 기반으로 전자파신호를 발산하는 레이더 위협을 역추정하기 위한 시뮬레이션 시스템의 구성요소를 분석하고, 역추정 모델을 점진적으로 유지할 수 있는 방법을 제안한다. 또한, 실험을 통하여 점진적 역추정 모델 갱신 기법의 유효성 및 개별 역추정결과의 통합 기법을 평가한다. 개별 역추정 모델의 생성을 위하여 의사결정트리, 베이지안 분류기, 인공신경망 및유클리디안 거리 측정방식과 코사인 유사도 측정방식을 활용하는 군집화 알고리즘을 이용하였다. 첫 번째 실험에서레이더 위협체에 대한 역추정 모델을 구축하기 위한 위협 예제의 크기를 점진적으로 증가시키면 역추정 모델의 정확도는 향상되었으며, 이러한 과정이 반복되면 역추정 모델에 대한 정확도는 일정한 값으로 수렴하였다. 두 번째 실험에서는 개별 역추정 모델의 결과를 통합하기 위하여 투표, 가중투표 및 뎀스터-쉐이퍼 알고리즘을 이용하였으며, 역추정 모델의 통합 결과는 뎀스터-쉐이퍼 알고리즘에 의한 역추정 정확도가 가장 좋은 성능을 보였다.

    영어초록

    Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases.
    In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국차세대컴퓨팅학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:34 오전