• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

역방향 인덱스 기반의 저장소를 이용한 이상 탐지 분석 (Anomaly Detection Analysis using Repository based on Inverted Index)

9 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2018.03
9P 미리보기
역방향 인덱스 기반의 저장소를 이용한 이상 탐지 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 45권 / 3호 / 294 ~ 302페이지
    · 저자명 : 박주미, 조위덕, 김강석

    초록

    정보통신 기술의 발전에 따른 새로운 서비스 산업의 출현으로 개인 정보 침해, 산업 기밀 유출 등 사이버 공간의 위험이 다양화 되어, 그에 따른 보안 문제가 중요한 이슈로 떠오르게 되었다. 본 연구에서는 기업 내 개인 정보 오남용 및 내부 정보 유출에 따른, 대용량 사용자 로그 데이터를 기반으로 기존의 시그니처(Signature) 보안 대응 방식에 비해, 실시간 및 대용량 데이터 분석기술에 적합한 행위 기반 이상 탐지방식을 제안하였다. 행위 기반 이상 탐지방식이 대용량 데이터를 처리하는 기술을 필요로 함에 따라, 역방향 인덱스(Inverted Index) 기반의 실시간 검색 엔진인 엘라스틱서치(Elasticsearch)를 사용하였다. 또한 데이터 분석을 위해 통계 기반의 빈도 분석과 전 처리 과정을 수행하였으며, 밀도 기반의 군집화 방법인 DBSCAN 알고리즘을 적용하여 이상 데이터를 분류하는 방법과 시각화를 통해 분석을 간편하게 하기 위한 한 사례를 보였다. 이는 기존의 이상 탐지 시스템과 달리 임계값을 별도로 설정하지 않고 이상탐지 분석을 시도하였다는 것과 통계적인 측면에서 이상 탐지 방식을 제안하였다는 것에 의의가 있다.

    영어초록

    With the emergence of the new service industry due to the development of information and communication technology, cyber space risks such as personal information infringement and industrial confidentiality leakage have diversified, and the security problem has emerged as a critical issue. In this paper, we propose a behavior-based anomaly detection method that is suitable for real-time and large-volume data analysis technology. We show that the proposed detection method is superior to existing signature security countermeasures that are based on large-capacity user log data according to in-company personal information abuse and internal information leakage. As the proposed behaviorbased anomaly detection method requires a technique for processing large amounts of data, a real-time search engine is used, called Elasticsearch, which is based on an inverted index. In addition, statistical based frequency analysis and preprocessing were performed for data analysis, and the DBSCAN algorithm, which is a density based clustering method, was applied to classify abnormal data with an example for easy analysis through visualization. Unlike the existing anomaly detection system, the proposed behavior-based anomaly detection technique is promising as it enables anomaly detection analysis without the need to set the threshold value separately, and was proposed from a statistical perspective.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 19일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:51 오후