PARTNER
검증된 파트너 제휴사 자료

Biaffine Average Attention 모델을 이용한 의미역 결정 (Semantic Role Labeling using Biaffine Average Attention Model)

6 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2022.05
6P 미리보기
Biaffine Average Attention 모델을 이용한 의미역 결정
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 5호 / 662 ~ 667페이지
    · 저자명 : 남충현, 장경식

    초록

    의미역 결정 작업은 서술어와 문장 내 행위자, 피행위자, 장소, 시간 등 서술어와 관련 있는 논항들을 추출하는 작업이다. 기존 의미역 결정 방법은 문장의 언어학적 특징 추출을 위한 파이프라인을 구축하는데, 파이프라인 내 각 추출 작업들의 오류가 의미역 결정 작업의 성능에 영향을 미치기 때문에 현재는 End-to-End 방법의 신경망 모델을 이용한 방법들이 제안되고 있다. 본 논문에서는 의미역 결정 작업을 위해 Biaffine Average Attention 구조를 이용한 신경망 모델을 제안한다. 제안하는 모델은 기존 연구에서 제안된 특정 시점에 대한 레이블 예측을 위해 주변 시점 정보를 이용하는 LSTM 모델 대신 문장 내 서술어와 논항의 거리에 상관없이 문장 전체 정보에 집중할 수 있는 Biaffine Average Attention 구조로 이루어져 있다. 제안하는 모델의 성능 평가를 위해 F1 점수를 이용하여 기존 연구에서 제안한 BERT 기반의 모델들과 비교하였으며, 76.21%의 성능으로 비교 모델보다 높은 성능을 보였음을 확인하였다.

    영어초록

    Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 07일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:13 오후