• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

정보보안을 위한 생체 인식 모델에 관한 연구 (A Study on Biometric Model for Information Security)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
10 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2024.02
10P 미리보기
정보보안을 위한 생체 인식 모델에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국전자통신학회
    · 수록지 정보 : 한국전자통신학회 논문지 / 19권 / 1호 / 317 ~ 326페이지
    · 저자명 : 김준영, 심춘보, 정세훈

    초록

    생체 인식은 사람의 생체적, 행동적 특징 정보를 특정 장치로 추출하여 본인 여부를 판별하는 기술이다. 생체 인식 분야에서 생체 특성 위조, 복제, 해킹 등 사이버 위협이 증가하고 있다. 이에 대응하여 보안 시스템이 강화되고 복잡해지며, 개인이 사용하기 어려워지고 있다. 이를 위해 다중 생체 인식 모델이 연구되고 있다. 기존 연구들은 특징 융합 방법을 제시하고 있으나, 특징 융합 방법 간의 비교는 부족하다. 이에 본 논문에서는 지문, 얼굴, 홍채 영상을 이용한 다중 생체 인식 모델의 융합 방법을 비교평가했다. 특징 추출을 위해 VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, Inception-v3를 사용했으며, 특성 융합을 위해 ‘Sensor-Level’, ‘Feature-Level’, ‘Score-Level’, ‘Rank-Level’ 융합 방법을 비교 평가했다. 비교 평가 결과 ‘Feature-Level’ 융합 방법에서 EfficientNet-B7 모델이 98.51%의 정확도를 보이며 높은 안정성을 보였다. 그러나 EfficietnNet-B7모델의 크기가 크기 때문에 생체 특성 융합을 위한 모델 경량화 연구가 필요하다.

    영어초록

    Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:51 오후