• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론 (A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations)

8 페이지
기타파일
최초등록일 2025.05.26 최종저작일 2020.11
8P 미리보기
수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론
  • 미리보기

    서지정보

    · 발행기관 : 한국화학공학회
    · 수록지 정보 : Korean Chemical Engineering Research(HWAHAK KONGHAK) / 58권 / 4호 / 573 ~ 580페이지
    · 저자명 : 김수환, 류준형

    초록

    최근 석유를 대체할 수송 에너지원으로 수소에 대한 관심이 커지고 있다. 수소의 장점을 극대화하기 위해서는 수소충전소가 많이 보급되어야 한다. 본 논문은 수소 충전소를 보다 가깝게 이용 할 수 있는 최적 위치 선정 방법론을 제안하였다. 기존 에너지의 공급처인 주유소와 천연가스 충전소의 위치를 우선 참고하고, 인구, 등록 차량 수 등의 데이터를 추가 반영하여 수소자동차의 예상 충전 수요를 계산하였다. 기계 학습(machine learning) 기법 중 하나인 k-중심자 군집화(k-medoids Clustering)를 이용하여 예상 수요에 대응하는 최적 수소 충전소 위치를 계산하였다. 제안된 방법의 우수성은 서울의 사례를 통해 수치적으로 설명하였다. 본 방법론과 같은 데이터 기반 방법은 향후 수소의 보급 속도를 높여 환경친화적인 경제 체계를 구축하는데 기여할 수 있을 것이다.

    영어초록

    Hydrogen emerged as a sustainable transport energy source. To increase hydrogen utilization, hydrogen refueling stations must be available in many places. However, this requires large-scale financial investment. This paper proposed a methodology for selecting the optimal location to maximize the use of hydrogen charging stations. The location of gas stations and natural gas charging stations, which are competing energy sources, was first considered, and the expected charging demand of hydrogen cars was calculated by further reflecting data such as population, number of registered vehicles, etc. Using k-medoids clustering, one of the machine learning techniques, the optimal location of hydrogen charging stations to meet demand was calculated. The applicability of the proposed method was illustrated in a numerical case of Seoul. Data-based methods, such as this methodology, could contribute to constructing efficient hydrogen economic systems by increasing the speed of hydrogen distribution in the future.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Korean Chemical Engineering Research(HWAHAK KONGHAK)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 08일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:58 오전