• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Inception V3를 이용한 흉부촬영 X선 영상의 폐렴 진단 분류 (Diagnostic Classification of Chest X-ray Pneumonia using Inception V3 Modeling)

8 페이지
기타파일
최초등록일 2025.05.23 최종저작일 2020.11
8P 미리보기
Inception V3를 이용한 흉부촬영 X선 영상의 폐렴 진단 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 14권 / 6호 / 773 ~ 780페이지
    · 저자명 : 김지율, 예수영

    초록

    4차 산업의 발전으로 의학 ‧ 보건 ‧ 바이오 등 여러 과학기술 분야에서는 질병을 예방하고 질병에 대한 피해를 줄이기 위한 연구가 이루어지고 있으며, 최근에는 ICT 기술의 발전과 더불어 인공지능 기술이 급부상하고 그 효용성이 입증되면서 영상의학 검사의 영상 분석에 인공지능 기술이 도입되어 연구되고 있다. 본 논문에서는 흉부 X선 영상을 이용하여 폐렴의 분류와 검출에 대한 딥러닝 모델을 직접 적용해보고 실제로 Inception 계열의 딥러닝 모델이 폐렴 검출에 있어 유용한 모델인지 평가하고자 한다. 실험재료는 캐글(Kaggle)에서 무료로 제공 및 공유하는 흉부 X선 영상 데이터 세트를 사용하였으며 전체 3,470개의 흉부 X선 영상 데이터 중 학습 데이터 세트 1,870개, 검증 데이터 세트 1,100개, 테스트 데이터 세트 500개로 분류하였다. 실험결과 Inception V3 딥러닝 모델의 Metric 평가에 대한 결과값은 정확도는 94.80%, 정밀도는 97.24%, 재현율은 94.00%, F1 스코어는 95.59의 결과값을 나타내었다. 그리고 흉부 X선 영상의 페렴 검출 및 분류에 대하여 Inception V3 딥러닝 모델링에 대한 최종 에포크의 정확도는 학습 모델링의 경우 94.91%, 검증 모델링은 89.68%의 정확도를 나타내었다. 손실함수 값의 평가는 학습 모델링은 1.127%, 검증 모델링은 4.603%의 손실함수 값을 나타내었다. 이러한 결과로 Inception V3 딥러닝 모델은 흉부영상 데이터의 특징 추출 및 분류에 있어 매우 우수한 딥러닝 모델이며 학습상태 또한 매우 우수하다고 평가하였다. 테스트 모델링에 대한 매트릭스 정확도 평가 결과 정상 흉부 X선 영상 데이터의 경우 96% ,폐렴 흉부 X선 영상 데이터의 경우 97%의 정확도가 입증되었다. Inception 계열의 딥러닝 모델의 경우 흉부 질환의 분류에 있어 유용한 딥러닝 모델이 될 것이라고 판단되며 인력의 보조적인 역할 또한 수행할 수 있을 것이라고 기대되어 부족한 의료인력 문제에도 해결점이 될 것이라고 사료된다. 향후 딥러닝을 이용한 폐렴의 진단에 대한 유사 연구 시 본 연구는 유사 연구의 기초자료로 제시될 것이라고 기대된다.

    영어초록

    With the development of the 4th industrial, research is being conducted to prevent diseases and reduce damage in various fields of science and technology such as medicine, health, and bio. As a result, artificial intelligence technology has been introduced and researched for image analysis of radiological examinations. In this paper, we will directly apply a deep learning model for classification and detection of pneumonia using chest X-ray images, and evaluate whether the deep learning model of the Inception series is a useful model for detecting pneumonia. As the experimental material, a chest X-ray image data set provided and shared free of charge by Kaggle was used, and out of the total 3,470 chest X-ray image data, it was classified into 1,870 training data sets, 1,100 validation data sets, and 500 test data sets. I did. As a result of the experiment, the result of metric evaluation of the Inception V3 deep learning model was 94.80% for accuracy, 97.24% for precision, 94.00% for recall, and 95.59 for F1 score. In addition, the accuracy of the final epoch for Inception V3 deep learning modeling was 94.91% for learning modeling and 89.68% for verification modeling for pneumonia detection and classification of chest X-ray images. For the evaluation of the loss function value, the learning modeling was 1.127% and the validation modeling was 4.603%. As a result, it was evaluated that the Inception V3 deep learning model is a very excellent deep learning model in extracting and classifying features of chest image data, and its learning state is also very good. As a result of matrix accuracy evaluation for test modeling, the accuracy of 96% for normal chest X-ray image data and 97% for pneumonia chest X-ray image data was proven. The deep learning model of the Inception series is considered to be a useful deep learning model for classification of chest diseases, and it is expected that it can also play an auxiliary role of human resources, so it is considered that it will be a solution to the problem of insufficient medical personnel. In the future, this study is expected to be presented as basic data for similar studies in the case of similar studies on the diagnosis of pneumonia using deep learning.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:10 오후