PARTNER
검증된 파트너 제휴사 자료

멀티 뷰 기법 리뷰: 이해와 응용 (Multi-view learning review: understanding methods and their application)

28 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2019.02
28P 미리보기
멀티 뷰 기법 리뷰: 이해와 응용
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 32권 / 1호 / 41 ~ 68페이지
    · 저자명 : 배강일, 이영섭, 임창원

    초록

    멀티 뷰 기법은 데이터를 다양한 관점에서 보려는 접근 방법이며 데이터의 다양한 정보를 통합하여 사용하려는 시도이다. 최근 많은 연구가 진행되고 있는 멀티 뷰 기법에서는 단일 뷰 만을 이용하여 모형을 학습시켰을 때 보다 좋은 성과를 보인 경우가 많았다. 멀티 뷰 기법에서 딥 러닝 기법의 도입으로 이미지, 텍스트, 음성, 영상 등 다양한 분야에서 좋은 성과를 보였다. 본 연구에서는 멀티 뷰 기법이 인간 행동 인식, 의학, 정보 검색, 표정 인식 분야에서 직면한 여러 가지 문제들을 어떻게 해결하고 있는지 소개하였다. 또한 전통적인 멀티 뷰 기법들을 데이터 차원, 분류기 차원, 표현 간의 통합으로 분류하여 멀티 뷰 기법의 데이터 통합 원리를 리뷰 하였다. 마지막으로 딥 러닝 기법 중 가장 범용적으로 사용되고 있는 CNN, RNN, RBM, Autoencoder, GAN 등이 멀티 뷰 기법에 어떻게 응용되고 있는지를 살펴보았다. 이때 CNN, RNN 기반 학습 모형을 지도학습 기법으로, RBM, Autoencoder, GAN 기반 학습 모형을 비지도 학습 기법으로 분류하여 이 방법들이 대한 이해를 돕고자 하였다.

    영어초록

    Multi-view learning considers data from various viewpoints as well as attempts to integrate various information from data. Multi-view learning has been studied recently and has showed superior performance to a model learned from only a single view. With the introduction of deep learning techniques to a multi-view learning approach, it has showed good results in various fields such as image, text, voice, and video. In this study, we introduce how multi-view learning methods solve various problems faced in human behavior recognition, medical areas, information retrieval and facial expression recognition. In addition, we review data integration principles of multi-view learning methods by classifying traditional multi-view learning methods into data integration, classifiers integration, and representation integration. Finally, we examine how CNN, RNN, RBM, Autoencoder, and GAN, which are commonly used among various deep learning methods, are applied to multi-view learning algorithms. We categorize CNN and RNN-based learning methods as supervised learning, and RBM, Autoencoder, and GAN-based learning methods as unsupervised learning.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:10 오전