• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

불균형 Haar 웨이블릿 변환을 이용한 군집화를 위한 시계열 표현 (Time series representation for clustering using unbalanced Haar wavelet transformation)

13 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2018.12
13P 미리보기
불균형 Haar 웨이블릿 변환을 이용한 군집화를 위한 시계열 표현
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 31권 / 6호 / 707 ~ 719페이지
    · 저자명 : 이세훈, 백창룡

    초록

    시계열 데이터의 분류와 군집화를 효율적으로 수행하기 위해 다양한 시계열 표현 방법들이 제안되었다. 본 연구는 Lin 등 (2007)이 제안한 국소 평균 근사를 이용하여 시계열의 차원을 축소한 후 심볼릭 자료로 이산화하는 symbolic aggregate approximation (SAX) 방법의 개선에 대해서 연구하였다. SAX는 국소 평균 근사를 할 때 등간격으로 임의의 개수의 세그먼트로 나누어 평균을 계산하여 세그먼트의 개수에 그 성능이 크게 좌우된다. 따라서 본 논문은 불균형 Haar 웨이블릿 변환을 통해 국소 평균 수준을 등간격이 아니라 자료의 특성을 반영하여 자료 의존적으로 선택하게 함으로써 시계열의 차원을 효과적으로 축소함과 동시에 정보의 손실을 줄이는 방법에 대해서 제안한다. 제안한 방법은 실증 자료 분석을 통해 SAX 방법을 개선시킴을 확인하였다.

    영어초록

    Various time series representation methods have been proposed for efficient time series clustering and classification. Lin et al. (DMKD, 15, 107-144, 2007) proposed a symbolic aggregate approximation (SAX) method based on symbolic representations after approximating the original time series using piecewise local mean. The performance of SAX therefore depends heavily on how well the piecewise local averages approximate original time series features. SAX equally divides the entire series into an arbitrary number of segments; however, it is not sufficient to capture key features from complex, large-scale time series data. Therefore, this paper considers data-adaptive local constant approximation of the time series using the unbalanced Haar wavelet transformation. The proposed method is shown to outperforms SAX in many real-world data applications.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:47 오후