• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

훈련지역의 취득방법 및 규모에 따른 JERS-1위성영상의 토지피복분류 정확도 평가 (Estimation of Classification Accuracy of JERS-1 Satellite Imagery according to the Acquisition Method and Size of Training Reference Data)

11 페이지
기타파일
최초등록일 2025.05.13 최종저작일 2002.03
11P 미리보기
훈련지역의 취득방법 및 규모에 따른 JERS-1위성영상의 토지피복분류 정확도 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 5권 / 1호 / 27 ~ 37페이지
    · 저자명 : 하성룡, 박상영, 박대희, 경천구

    초록

    정량적인 토지피복도의 확보는 유역에 분포하는 비점오염원의 규명에 있어서 매우 중요한 과제로 인식되고 있다. 본 연구는 위성영상을 이용한 토지피복분류 과정에 있어서, 훈련지역의 취득방법 및 규모가 분류정확도에 미치는 영향을 JERS-1 OPS 위성영상을 기반으로 평가하였다. 전체 연구대상지역 중에서 0.3%, 0.5%, 1.0%를 훈련지역으로 추출함에 있어서 두 가지 기법을 제안하였다. 첫번째 기법은 해당지역에 대한 사전 지식을 갖춘 연구자가 훈련지역을 추출하였으며, 두번째 기법은 기하학적 보정을 행한 항공사진과 수치지도를 이용하여 훈련지역을 추출하였다. 영상의 토지피복 분류는 최대우도분류법을 이용하였다. 연구결과 사용자에 의한 훈련지역 취득기법보다 항공사진과 수치지도를 이용하여 훈련지역을 추출하여 최대우도분류법을 적응할 경우 전체정확도가 최대 18% 정도 향상하였다. 우리나라와 같이 복잡하고 다양한 토지이용을 가진 지형에서 JERS-1 영상을 이용하여 95%의 신뢰도를 얻기 위해서는 적어도 훈련지역을 전체지역의 약 1% 이상 추출하여야 만족할 만한 토지피복분류를 수행할 수 있었다.

    영어초록

    The classification accuracy of land cover has been considered as one of the major issues to estimate pollution loads generated from diffuse landuse patterns in a watershed. This research aimed to assess the effects of the acquisition methods and sampling size of training reference data on the classification accuracy of land cover using an imagery acquired by optical sensor(OPS) on JERS-1. Two kinds of data acquisition methods were considered to prepare training data. The first was to assign a certain land cover, type to a specific pixel based on the researchers subjective discriminating capacity about current land use and the second was attributed to an aerial photograph incorporated with digital maps with GIS. Three different sizes of samples, 0.3%, 0.5%, and 1.0% of all pixels, were applied to examine the consistency of the classified land cover with the training data of corresponding pixels. Maximum likelihood scheme was applied to classify the land use patterns of JERS-1 imagery. Classification run applying an aerial photograph achieved 18% higher consistency with the training data than the run applying the researchers subjective discriminating-capacity. Regarding the sample size, it was proposed that the size of training area should be selected at least over 1% of all of the pixels in the study area in order to obtain the accuracy with 95% for JERS-1 satellite imagery on a typical small-to-medium-size urbanized area.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:18 오후