• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법 (Pairwise fusion approach to cluster analysis with applications to movie data)

19 페이지
기타파일
최초등록일 2025.05.11 최종저작일 2022.04
19P 미리보기
영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 35권 / 2호 / 265 ~ 283페이지
    · 저자명 : 김희진, 박세영

    초록

    사용자들의 영화정보를 기록한 MovieLens 데이터는 추천 시스템 연구에서 아이디어를 탐색하고 검증하는데 상당한 가치가 있는 데이터로, 기존 데이터 분할 및 군집화 알고리즘을 사용하여 사용자 평점 데이터를 기반으로 항목 집합을 분할하는 연구 등에 사용되는 데이터이다. 본 논문에서는 기존 연구에서 대표적으로 사용되었던 영화 평점 데이터와 영화 장르 데이터를 통해 사용자의 장르 선호도를 예측하여 선호도 패턴을 기반으로 사용자를 군집화(clustering)하고, 유의미한 정보를 얻는 연구를 진행하였다. MovieLens 데이터는 영화의 전체 개수에 비해 사용자별 평균 영화 평점 수가 낮아 결측 비율이 높다. 이러한 이유로 기존의 군집화 방법을 적용하는 데 한계가 존재한다. 본 논문에서는 MovieLens 데이터 특성에 모티브를 얻어 쌍별 규합 벌점함수(pairwise fused penalty)를 활용한 볼록 군집화(convex clustering) 기반의 방법을 제안한다. 특히 결측치 대체(missing imputation)도 동시에 해결하는 최적화 문제를 통해 기존의 군집화 분석과 차별화하였다. 군집화는 반복 알고리즘인 ADMM을 통해 제안하는 최적화 문제를 풀어 진행한다. 또한 시뮬레이션과 MovieLens 데이터 적용을 통해 제안하는 군집화 방법이 기존의 방법보다 노이즈 및 이상치에 상대적으로 민감하지 않은 것으로 보인다.

    영어초록

    MovieLens data consists of recorded movie evaluations that was often used to measure the evaluation score in the recommendation system research field. In this paper, we provide additional information obtained by clustering user-specific genre preference information through movie evaluation data and movie genre data. Because the number of movie ratings per user is very low compared to the total number of movies, the missing rate in this data is very high. For this reason, there are limitations in applying the existing clustering methods. In this paper, we propose a convex clustering-based method using the pairwise fused penalty motivated by the analysis of MovieLens data. In particular, the proposed clustering method execute missing imputation, and at the same time uses movie evaluation and genre weights for each movie to cluster genre preference information possessed by each individual. We compute the proposed optimization using alternating direction method of multipliers algorithm. It is shown that the proposed clustering method is less sensitive to noise and outliers than the existing method through simulation and MovieLens data application.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:43 오전