PARTNER
검증된 파트너 제휴사 자료

지식 그래프의 링크 예측을 위한 거대 언어 모델 기반 관계 설명문 생성 방법 (Generating Relation Descriptions with Large Language Model for Link Prediction)

10 페이지
기타파일
최초등록일 2025.05.03 최종저작일 2024.10
10P 미리보기
지식 그래프의 링크 예측을 위한 거대 언어 모델 기반 관계 설명문 생성 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 51권 / 10호 / 908 ~ 917페이지
    · 저자명 : 차현묵, 고영중

    초록

    지식 그래프는 개체들과 개체 사이의 관계들로 이루어진 네트워크로 수많은 자연어처리 문제 해결에 활용되고 있다. 불완전한 지식 그래프를 완성하기 위해 링크 예측과 관계 예측을 통한 그래프 완성 연구가 이루어지고 있다. 최근에는 개체와 관계에 대한 자연어 정보를 바탕으로 듀얼 인코더 구조를 활용하는 모델이 등장하여 많은 관심을 받았다. 하지만, 링크 예측 데이터셋에는 관계에 대한 자연어 설명문은 존재하지 않기 때문에 개체에 대한 자연어 설명문에 지나치게 의존적이라는 문제점이 존재한다. 본 논문에서는 이러한 문제 상황을 해결하기 위해서 거대 언어 모델인 GPT-3.5-turbo를 활용하여 관계에 대한 자연어 설명문을 생성하여 기존의 모델이 관계에 대한 정보를 풍부하게 학습할 수 있도록 하였다. 또한 제안 방법을 통해 생성한 관계 설명문을 다른 언어 모델 기반 링크 예측 모델에 적용했을 때 성능 향상이 기대된다. 링크 예측을 통한 성능 평가 결과, 제안 방법은 베이스라인 모델과 비교했을 때 한국어 ConceptNet, WN18RR, FB15k-237, YAGO3-10 데이터셋에 대해 MRR에서 각각 0.34%p, 0.11%p, 0.12%p, 0.41%p의 성능향상을 보였다.

    영어초록

    The Knowledge Graph is a network consisting of entities and the relations between them. It is used for various natural language processing tasks. One specific task related to the Knowledge Graph is Knowledge Graph Completion, which involves reasoning with known facts in the graph and automatically inferring missing links. In order to tackle this task, studies have been conducted on both link prediction and relation prediction. Recently, there has been significant interest in a dual-encoder architecture that utilizes textual information. However, the dataset for link prediction only provides descriptions for entities, not for relations. As a result, the model heavily relies on descriptions for entities. To address this issue, we utilized a large language model called GPT-3.5-turbo to generate relation descriptions. This allows the baseline model to be trained with more comprehensive relation information. Moreover, the relation descriptions generated by our proposed method are expected to improve the performance of other language model-based link prediction models. The evaluation results for link prediction demonstrate that our proposed method outperforms the baseline model on various datasets, including Korean ConceptNet, WN18RR, FB15k-237, and YAGO3-10. Specifically, we observed improvements of 0.34%p, 0.11%p, 0.12%p, and 0.41%p in terms of Mean Reciprocal Rank (MRR), respecitvely.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:52 오전