• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석 (Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island)

12 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2021.12
12P 미리보기
제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 54권 / 1143 ~ 1154페이지
    · 저자명 : 신문주, 김진우, 문덕철, 이정한, 강경구

    초록

    활성화함수의 선택은 인공신경망(Artificial Neural Network, ANN) 모델의 지하수위 예측성능에 큰 영향을 미친다. 특히 제주도의 중산간 지역과 같이 지하수위의 변동폭이 크고 변동양상이 복잡한 경우 적절한 지하수위 예측을 위해서는 다양한 활성화함수의 비교분석을 통한 최적의 활성화함수 선택이 반드시 필요하다. 본 연구에서는 지하수위의 변동폭이 크고 변동양상이 복잡한 제주도 표선유역 중산간지역 2개 지하수위 관측정을 대상으로 5개의 활성화함수(sigmoid, hyperbolic tangent (tanh), Rectified Linear Unit (ReLU), Leaky Rectified Linear Unit (Leaky ReLU), Exponential Linear Unit (ELU))를 ANN 모델에 적용하여 지하수위 예측결과를 비교 및 분석하고 최적 활성화함수를 도출하였다. 그리고 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory (LSTM) 모델의 결과와 비교분석하였다. 분석결과 지하수위 변동폭이 상대적으로 큰 관측정과 상대적으로 작은 관측정에 대한 지하수위 예측에 대해서는 각각 ELU와 Leaky ReLU 함수가 최적의 활성화함수로 도출되었다. 반면 sigmoid 함수는 학습기간에 대해 5개 활성화함수 중 예측성능이 가장 낮았으며 첨두 및 최저 지하수위 예측에서 적절하지 못한 결과를 도출하였다. 따라서 ANN-sigmoid 모델은 가뭄기간의 지하수위 예측을 통한 지하수자원 관리목적으로 사용할 경우 주의가 필요하다. ANN-ELU와 ANN-Leaky ReLU 모델은 LSTM 모델과 대등한 지하수위 예측성능을 보여 활용가능성이 충분히 있으며 LSTM 모델은 ANN 모델들 보다 예측성능이 높아 인공지능 모델의 예측성능 비교분석 시 참고 모델로 활용될 수 있다. 마지막으로 학습기간의 정보량에 따라 학습기간의 지하수위 예측성능이 검증 및 테스트 기간의 예측성능보다 낮을 수 있다는 것을 확인하였으며, 관측지하수위의 변동폭이 크고 변동양상이 복잡할수록 인공지능 모델별 지하수위 예측능력의 차이는 커졌다. 본 연구에서 제시한 5개의 활성화함수를 적용한 연구방법 및 비교분석 결과는 지하수위 예측뿐만 아니라 일단위 하천유출량 및 시간단위 홍수량 등 지표수 예측을 포함한 다양한 연구에 유용하게 사용될 수 있다.

    영어초록

    The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:16 오전