• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구 (A TBM data-based ground prediction using deep neural network)

12 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2021.01
12P 미리보기
심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구
  • 미리보기

    서지정보

    · 발행기관 : 사단법인 한국터널지하공간학회
    · 수록지 정보 : 한국터널지하공간학회 논문집 / 23권 / 1호 / 13 ~ 24페이지
    · 저자명 : 김태환, 곽노상, 김택곤, 정사범, 고태영

    초록

    암반 및 연약지반을 포함한 다양한 지반 조건에서 TBM (Tunnel Boring Machine) 터널링이 활용되고 있다. 굴착 성능을 높이기 위해서 지반 조건에 따라 최적으로 장비를 운영해야 하며, 이를 통해 공기단축을 통한 비용 절감 효과를 기대할 수 있다. 하지만 시추 조사를 통해 획득한 지반 정보는 시추공 사이 불확실성이 존재하므로, 실시간 최적 운전에 부족함이 있다. 본 연구에서는 지반의 불확실성 문제를 해결하고자 5초마다 기록된 TBM 데이터를 활용하여 굴착 지반 예측 시스템을 구축하고자 한다. 싱가포르 현장에서 획득한 화강암의 풍화도를 고려하여 암반, 토사, 복합지반 세 가지로 지질로 재분류하였고, 실시간으로 도출되는 기계 데이터로 이를 예측하고자 한다. 현장에서 획득한 TBM 데이터에 대해 이상치 제거, 정규화, 특성 추출 등의 전처리 방법을 적용하였고, 지질을 분류하기 위해 6개의 은닉층을 가진 심층 신경망(Deep Neural Network, DNN)을 활용하였다. 10겹 교차검증을 통해 분류 시스템을 평가한 결과, 평균 75.4%의 정확도를 확인하였다(총 데이터 388,639개). 본 연구를 통해 지질 불확실성을 감소시키고, 지반 조건에 따른 실시간 최적 운전에 도움이 될 것으로 판단된다.

    영어초록

    Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 25일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:21 오후