• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

순환신경망을 이용한 자기장 기반 실내측위시스템 (Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2018.12
9P 미리보기
순환신경망을 이용한 자기장 기반 실내측위시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 14권 / 6호 / 57 ~ 65페이지
    · 저자명 : 배한준, 최린, 박병준

    초록

    BLE 는 Wi-Fi 기반 지문인식과 같은 기존의 RF 신호 기반 실내 치인식 기술은 RF 신호의 불안정한 수신 신 호 세기로 인해 소규모 실내 환경에서도 작지 않은 오차를 발생시키며 공항, 백화과 같은 규모 실내 환경에 용하기가 어렵다. 이 논문에서는 RF 신호보다 안정인 신호 강도를 갖는 자기장 신호를 이용한 실내측 시스템을 제안한다. 유사한 자기장 값이 같은 실내 공간에 여럿 존재하지만, 사용자의 이동이 계속됨에 따라 자기장 신호는 고유 시스를 가지게 된다. 본 논문에서는 시간에 따라 변화하는 센서 데이터 시스를 인식하는 데 효과인 순환 신경망 (Recurrent neural network, RNN)이라 불리는 심층 신경망 모델을 사용하여 사용자의 재 치와 이 동 경로를 추한다. 제안된 신경망 기반의 지자기 실내측시스템의 평가를 해 약 94m x 26m 크기의 교내 테 스트베드에서 자기장 맵을 구축하고 자기장맵으로부터 추출한 다양한 이동 경로와 치 정보를 이용하여 RNN을 학습한 결과, 테스트베드에서 제안된 시스템은 평균 1.20 미터의 테스트 측 오차를 달성할 수 있었다.

    영어초록

    Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about 94m x 26 m dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국차세대컴퓨팅학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:19 오전