• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가 (Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application)

8 페이지
기타파일
최초등록일 2025.04.24 최종저작일 2022.10
8P 미리보기
학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 16권 / 5호 / 595 ~ 602페이지
    · 저자명 : 김지율, 예수영

    초록

    본 연구는 딥러닝을 이용한 흉부 X선 폐렴 영상에 대하여 정확하고 효율적인 의료영상의 자동진단을 위해서 가장 효율적인 학습률을 제시하고자 하였다.
    Inception V3 딥러닝 모델에 학습률을 0.1, 0.01, 0.001, 0.0001로 각각 설정한 후 3회 딥러닝 모델링을 수행하였다. 그리고 검증 모델링의 평균 정확도 및 손실 함수 값, Test 모델링의 Metric을 성능평가 지표로 설정하여 딥러닝 모델링의 수행 결과로 획득한 결과값의 3회 평균값으로 성능을 비교 평가하였다.
    딥러닝 검증 모델링 성능평가 및 Test 모델링 Metric에 대한 성능평가의 결과, 학습률 0.001을 적용한 모델링이 가장 높은 정확도와 우수한 성능을 나타내었다. 이러한 이유로 본 논문에서는 딥러닝 모델을 이용한 흉부 X선 영상에 대한 폐렴 유무 분류 시 학습률을 0.001로 적용할 것을 권고한다. 그리고 본 논문에서 제시하는 학습률의 적용을 통한 딥러닝 모델링 시 흉부 X선 영상에 대한 폐렴 유무 분류에 대한 인력의 보조적인 역할을 수행할 수 있을 거라고 판단하였다.
    향후 딥러닝을 이용한 폐렴 유무 진단 분류 연구가 계속해서 진행될 시, 본 논문의 논문 연구 내용은 기초자료로 활용될 수 있다고 여겨지며 나아가 인공지능을 활용한 의료영상 분류에 있어 효율적인 학습률 선택에 도움이 될 것으로 기대된다.

    영어초록

    This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 17일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:13 오후