PARTNER
검증된 파트너 제휴사 자료

고속도로 본선에서의 교통사고 예측모형 개발 (Developing a Traffic Accident Prediction Model for Freeways)

16 페이지
기타파일
최초등록일 2025.04.21 최종저작일 2012.04
16P 미리보기
고속도로 본선에서의 교통사고 예측모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 30권 / 2호 / 101 ~ 116페이지
    · 저자명 : 문승라, 이영인, 이수범

    초록

    사고예측모형은 장래 계획 노선이나 다른 노선에 적용되어 사고를 예측하거나 안전개선사업 및 교통정책의 평가등에 활용된다. 본 연구에서는 고속도로 본선에 대해 이러한 용도로 활용될 수 있는 사고예측모형을 구축하고자 한다. 또한 자료 구축이 용이한 변수를 선정하여 모형을 쉽게 활용할 수 있도록 하는 것을 기본 목표로 하였다. 모형은 종속변수를 사고건수와 사상자발생사고건수로 하여 사고모형과 사상자발생사고모형을 각각 구축하였다. 모형에적용된 확률구조는 음이항 분포와 포아송 분포이며, 추정에 의해 적합한 모형을 선별하였다. 국내 고속도로중 주요한 9개 노선을 선정하였고, 시간적으로는 2003~2007년까지 5개년도 자료를 활용하였다. 모형의 설명변수는 교통류특성을 나타내는 교통량 등의 예측 가능한 변수와 기하구조 요인 등을 적용하였다. 최우추정법에 의한 추정 결과 사고모형의 경우 구간길이, 일교통량, 버스비율, 곡선구간수가 유의한 변수로 추정되었으며 사상자발생사고모형에서는 구간길이와 일교통량, 버스비율이 유의한 변수로 추정되었다. 모형의 공간적·시간적 전이 가능성을 확인하기 위해 우도비 검정을 수행한 결과, 사고모형은 6차로 이상이나 4차로의 교통류 및 기하구조 특성을 가지는 도로로의 전이가 가능하였다, 반면 사상자발생 사고모형은 모든 도로와 시간대로의 전이가 가능하여, 모형의 활용도가 높게 나타났다. 결과적으로본 연구에서 구축된 모형은 다른 노선과 장래 계획, 정책 평가 등에 다양하게 활용될 수 있을 것이다.

    영어초록

    Accident prediction models have been utilized to predict accident possibilities in existing or projected freeways and to evaluate programs or policies for improving safety. In this study, a traffic accident prediction model for freeways was developed for the above purposes. When selecting variables for the model, the highest priority was on the ease of both collecting data and applying them into the model. The dependent variable was set as the number of total accidents and the number of accidents including casualties in the unit of IC(or JCT). As a result,two models were developed; the overall accident model and the casualty-related accident model. The error structure adjusted to each model was the negative binomial distribution and the Poisson distribution, respectively.
    Among the two models, a more appropriate model was selected by statistical estimation. Major nine national freeways were selected and five-year dada of 2003~2007 were utilized. Explanatory variables should take on either a predictable value such as traffic volumes or a fixed value with respect to geometric conditions. As a result of the Maximum Likelihood estimation, significant variables of the overall accident model were found to be the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volume to the number of curved segments between ICs(or JCTs). For the casualty-related accident model, the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volumes had a significant impact on the accident. The likelihood ratio test was conducted to verify the spatial and temporal transferability for estimated parameters of each model. It was found that the overall accident model could be transferred only to the road with four or more than six lanes.
    On the other hand, the casualty-related accident model was transferrable to every road and every time period. In conclusion, the model developed in this study was able to be extended to various applications to establish future plans and evaluate policies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:02 오전