PARTNER
검증된 파트너 제휴사 자료

지표대기 미세먼지 정화를 위한 식물체 음이온 발생량 분석 및 음이온의 미세먼지 기대정화지수 평가 (Evaluation on the Expected Purification Efficiency of Air Ion and Analysis on the Generated Amount of Negative Air Ions by Plants for the Purification of Particulate Matter in Air)

9 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2020.06
9P 미리보기
지표대기 미세먼지 정화를 위한 식물체 음이온 발생량 분석 및 음이온의 미세먼지 기대정화지수 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국환경과학회
    · 수록지 정보 : 한국환경과학회지 / 29권 / 6호 / 623 ~ 631페이지
    · 저자명 : 오득균, 주진희

    초록

    This study analyzes the effect of negative air ions on the concentration of airborne particulate matter and evaluates the expected purification efficiency of open spaces for particulate matter by investigating the amount of negative air ions generated by plants.
    This study establishes a negative air ion generation treatment environment, plant environment, and control environment to measure the purification efficiency of particulate matter under the conditions of each, analyzing the expected purification efficiency by designing a particulate matter purification model. Results show that the amount of generated negative air ion according to environment was negative air ion generation treatment environment > plant environment > control environment; this order also applies to the particulate matter purification efficiency. Moreover, it took 65 min for the negative ion generation treatment environment, 90 min for the plant environment, and 240 min for the control environment to reach the standard expected purification efficiency of particulate matter concentration of 960 mg/m³ for PM10. For PM2.5, with the designated maximum concentration of 700 mg/m³, it took 60 min for the negative ion generation treatment environment, 80 min for the plant environment, and more than 240 min for the control environment. Based on these results, the expected purification efficiency compared to the control environment was quadrupled in the negative ion generation treatment environment and tripled in the plant environment on average.

    영어초록

    This study analyzes the effect of negative air ions on the concentration of airborne particulate matter and evaluates the expected purification efficiency of open spaces for particulate matter by investigating the amount of negative air ions generated by plants.
    This study establishes a negative air ion generation treatment environment, plant environment, and control environment to measure the purification efficiency of particulate matter under the conditions of each, analyzing the expected purification efficiency by designing a particulate matter purification model. Results show that the amount of generated negative air ion according to environment was negative air ion generation treatment environment > plant environment > control environment; this order also applies to the particulate matter purification efficiency. Moreover, it took 65 min for the negative ion generation treatment environment, 90 min for the plant environment, and 240 min for the control environment to reach the standard expected purification efficiency of particulate matter concentration of 960 mg/m³ for PM10. For PM2.5, with the designated maximum concentration of 700 mg/m³, it took 60 min for the negative ion generation treatment environment, 80 min for the plant environment, and more than 240 min for the control environment. Based on these results, the expected purification efficiency compared to the control environment was quadrupled in the negative ion generation treatment environment and tripled in the plant environment on average.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:40 오전