• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

이상 탐지를 위한 시스템콜 시퀀스 임베딩 접근 방식 비교 (Comparison of System Call Sequence Embedding Approaches for Anomaly Detection)

7 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2022.02
7P 미리보기
이상 탐지를 위한 시스템콜 시퀀스 임베딩 접근 방식 비교
  • 미리보기

    서지정보

    · 발행기관 : 중소기업융합학회
    · 수록지 정보 : 융합정보논문지 / 12권 / 2호 / 47 ~ 53페이지
    · 저자명 : 이근섭, 박경선, 김강석

    초록

    최근 지능화된 보안 패러다임의 변화에 따라, 다양한 정보보안 시스템에서 발생하는 각종 정보를 인공지능 기반 이상탐지에 적용하기 위한 연구가 증가하고 있다. 따라서 본 연구는 로그와 같은 시계열 데이터를 수치형 특성인 벡터로 변환하기 위하여 딥러닝 기반 Word2Vec 모델의 CBOW와 Skip-gram 추론 방식과 동시발생 빈도 기반 통계 방식을 사용하여 공개된 ADFA 시스템콜 데이터에 대하여, 벡터의 차원, 시퀀스 길이 및 윈도우 사이즈를 고려한 다양한 임베딩 벡터로의 변환에 대한 실험을 진행하였다. 또한 임베딩 모델로 생성된 벡터를 입력으로 하는 GRU 기반 이상 탐지 모델을 통해 탐지 성능뿐만 아니라 사용된 임베딩 방법들의 성능을 비교 평가하였다. 통계 모델에 비해 추론 기반 모델인 Skip-gram이 특정 윈도우 사이즈나 시퀀스 길이에 치우침 없이 좀 더 안정되게(stable) 성능을 유지하여, 시퀀스 데이터의 각 이벤트들을 임베딩 벡터로 만드는데 더 효과적임을 확인하였다.

    영어초록

    Recently, with the change of the intelligent security paradigm, study to apply various information generated from various information security systems to AI-based anomaly detection is increasing. Therefore, in this study, in order to convert log-like time series data into a vector, which is a numerical feature, the CBOW and Skip-gram inference methods of deep learning-based Word2Vec model and statistical method based on the coincidence frequency were used to transform the published ADFA system call data. In relation to this, an experiment was carried out through conversion into various embedding vectors considering the dimension of vector, the length of sequence, and the window size. In addition, the performance of the embedding methods used as well as the detection performance were compared and evaluated through GRU-based anomaly detection model using vectors generated by the embedding model as an input. Compared to the statistical model, it was confirmed that the Skip-gram maintains more stable performance without biasing a specific window size or sequence length, and is more effective in making each event of sequence data into an embedding vector.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합정보논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 25일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:19 오후