• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 언어모델을 이용한 한국어 학습자 쓰기 평가의 자동 점수 구간 분류 -KoBERT와 KoGPT2를 중심으로- (Automatic Score Range Classification of Korean Essays Using Deep Learning-based Korean Language Models -The Case of KoBERT & KoGPT2-)

25 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2021.04
25P 미리보기
딥러닝 기반 언어모델을 이용한 한국어 학습자 쓰기 평가의 자동 점수 구간 분류 -KoBERT와 KoGPT2를 중심으로-
  • 미리보기

    서지정보

    · 발행기관 : 국제한국언어문화학회
    · 수록지 정보 : 한국언어문화학 / 18권 / 1호 / 217 ~ 241페이지
    · 저자명 : 조희련, 이유미, 임현열, 차준우, 이찬규

    초록

    이 연구에서는 '한국어 딥러닝 모델'이 '한국어 학습자의 쓰기 자료에 대한 한국어 교사의 평가 점수'를 어느 정도 유사하게 예측할 수 있는지 살펴보았다. 구체적으로 이 연구에서는 304편의 한국어 쓰기 자료와 각각에 대한 평가 점수를 KoBERT와 KoGPT2로 학습시킨 후 그것이 인간 채점자(한국어 교사)의 평가 점수를 어느 정도 유사하게 예측하는지 실험하였다.
    학습 데이터는 주제에 따라 '직업'과 '행복'으로 구분하였고, 점수에 따라 4종 레이블을 부착하였다. 7겹 교차 검증을 통한 실험 결과, KoBERT에서는 '직업' 데이터에서 48.8%, '행복' 데이터에서 65.2%의 분류 정확도를 나타냈다. KoGPT2에서는 같은 데이터에 대해 각각 50.6%와 58.9%의 분류 정확도를 나타냈다. 더불어, 모든 주제를 통합한 데이터에서는 KoBERT와 KoGPT2에 대해 각각 54.5%와 46.5%의 분류 정확도를 확인할 수 있었다.
    이 연구를 통해 한국어 쓰기 자료에 대한 자동 채점 시스템의 가능성을 확인할 수 있었다. 향후 GPT-3의 한국어 모델이 개발되는 등의 기술 발전이 이루어진다면, 이 연구에서 시도한 한국어 자동 채점 시스템도 충분히 가능할 것으로 기대한다.

    영어초록

    Automatic Score Range Classification of Korean Essays Using Deep Learning-based Korean Language Models-The Case of KoBERT & KoGPT2-. We investigate the performance of deep learning-based Korean language models on a task of automatically classifying Korean essays written by foreign students. We construct an experimental data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job (‘job’), conditions of a happy life (‘happiness’), relationship between money and happiness, and definition of success. These essays were divided into four scoring levels, and using this 4-class data set, we fine-tuned two Korean deep learning-based language models, namely, KoBERT and KoGPT2, to use them in the automatic essay classification experiment. The 7-fold cross validation classification accuracies of ‘job’ and ‘happiness’ essays were 48.8% and 65.2% respectively for KoBERT, and 50.6% and 58.9% respectively for KoGPT2. Furthermore, the 7-fold cross validation classification accuracies of the integrated dataset that combined all essays were 54.5% and 46.5% for KoBERT and KoGPT2 respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국언어문화학”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:56 오후