• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용 (Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques)

10 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.11
10P 미리보기
EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 12권 / 11호 / 471 ~ 480페이지
    · 저자명 : 이현상, 이원석, 조보근, 이희준, 오상진, 유상우, 남마루, 이현식

    초록

    국내 건설수주 규모는 2013년 91.3조원에서 2021년 총 212조원으로 특히 민간부문에서 크게 성장하였다. 국내외 시장 규모가 성장하면서,EPC(Engineering, Procurement, Construction) 프로젝트의 규모와 복잡성이 더욱 증가되고, 이에 프로젝트 관리 및 ITB(Invitation to Bid) 문서의위험 관리가 중요한 이슈가 되고 있다. EPC 프로젝트 발주 이후 입찰 절차에서 실제 건설 회사에게 부여되는 대응 시간은 한정적일 뿐만 아니라,인력 및 비용의 문제로 ITB 문서 계약 조항의 모든 리스크를 검토하는데 매우 어려움이 있다. 기존 연구에서는 이와 같은 문제를 해결하고자 EPC계약 문서의 위험 조항을 범주화하고, 이를 AI 기반으로 탐지하려는 시도가 있었으나, 이는 레이블링 데이터 활용의 한계와 클래스 불균형과 같은데이터 측면의 문제로 실무에서 활용할 수 있는 수준의 지원 시스템으로 활용하기 어려운 상황이다. 따라서 본 연구는 기존 연구와 같이 위험조항 자체를 정의하고 분류하는 것이 아니라, FIDIC Yellow 2017(국제 컨설팅엔지니어링 연맹 표준 계약 조건) 기준 계약 조항을 세부적으로 분류할수 있는 AI 모델을 개발하고자 한다. 프로젝트의 규모, 유형에 따라서 세부적으로 검토해야 하는 계약 조항이 다를 수 있기 때문에 이와 같은다중 텍스트 분류 기능이 필요하다. 본 연구는 다중 텍스트 분류 모델의 성능 고도화를 위해서 최근 텍스트 데이터의 컨텍스트를 효율적으로 학습할수 있는 ELECTRA PLM(Pre-trained Language Model)을 사전학습 단계부터 개발하고, 해당 모델의 성능을 검증하기 위해서 총 4단계 실험을진행했다. 실험 결과, 자체 개발한 ITB-ELECTRA 모델 및 Legal-BERT의 앙상블 버전이 57개 계약 조항 분류에서 가중 평균 F1-Score 기준 76%로가장 우수한 성능을 달성했다.

    영어초록

    The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a totalof 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale andcomplexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB(Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process followingthe EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpowerand cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, butthere were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance.
    Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(FederationInternationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previousresearch. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary dependingon the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRAPLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducteda four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRAmodel and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:24 오후