• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의학습률에 따른 성능 향상 분석 (Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates)

13 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.10
13P 미리보기
전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의학습률에 따른 성능 향상 분석
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 39권 / 5호 / 1111 ~ 1123페이지
    · 저자명 : 예철수, 안영만, 백태웅, 김경태

    초록

    원격탐사 영상을 이용한 지표 속성의 변화를 모니터링 하기 위해서 딥러닝(deep learning) 모델을 이용한의미론적 영상 분할 방법이 최근에 널리 사용되고 있다. 대표적인 의미론적 영상 분할 딥러닝 모델인 UNet 모델을 비롯하여 다양한 종류의 UNet 기반의 딥러닝 모델들의 성능 향상을 위해서는 학습 데이터셋의 크기가 충분해야 한다. 학습 데이터셋의 크기가 커지면 이를 처리하는 하드웨어 요구 사항도 커지고 학습에 소요되는 시간도 크게 증가되는 문제점이 발생한다. 이런 문제를 해결할 수 있는 방법인 전이학습은 대규모의 학습 데이터셋이 없어도 모델 성능을 향상시킬 수 있는 효과적인 방법이다. 본 논문에서는 UNet 기반의 딥러닝 모델들을대표적인 사전 학습 모델(pretrained model)인 VGG19 모델 및 ResNet50 모델과 결합한 세 종류의 전이학습 모델인 UNet-ResNet50 모델, UNet-VGG19 모델, CBAM-DRUNet-VGG19 모델을 제시하고 이를 건물 추출에 적용하여 전이학습 적용에 따른 정확도 향상을 분석하였다. 딥러닝 모델의 성능이 학습률의 영향을 많이 받는 점을 고려하여 학습률 설정에 따른 각 모델별 성능 변화도 함께 분석하였다. 건물 추출 결과의 성능 평가를 위해서 Kompsat-3A 데이터셋, WHU 데이터셋, INRIA 데이터셋을 사용하였으며 세 종류의 데이터셋에 대한 정확도 향상의 평균은 UNet 모델 대비 UNet-ResNet50 모델이 5.1%, UNet-VGG19 모델과 CBAM-DRUNet-VGG19모델은 동일하게 7.2%의 결과를 얻었다.

    영어초록

    In recent times, semantic image segmentation methods using deep learning models have beenwidely used for monitoring changes in surface attributes using remote sensing imagery. To enhance theperformance of various UNet-based deep learning models, including the prominent UNet model, it isimperative to have a sufficiently large training dataset. However, enlarging the training dataset not onlyescalates the hardware requirements for processing but also significantly increases the time required fortraining. To address these issues, transfer learning is used as an effective approach, enabling performanceimprovement of models even in the absence of massive training datasets. In this paper we present threetransfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which arecombined with the representative pretrained models of VGG19 model and ResNet50 model. We appliedthese models to building extraction tasks and analyzed the accuracy improvements resulting from theapplication of transfer learning. Considering the substantial impact of learning rate on the performance ofdeep learning models, we also analyzed performance variations of each model based on different learningrate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA datasetfor evaluating the performance of building extraction results. The average accuracy improvements for thethree dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, whileboth UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:10 오전