• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

스마트 건설 시공관리 자동화를 위한 딥러닝 기반 균열 검출 장치 개발 및 성능 검증 (Development of Tunnel Lining Crack Detection Device and Crack Detection for Smart Construction diagnosis)

8 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2024.11
8P 미리보기
스마트 건설 시공관리 자동화를 위한 딥러닝 기반 균열 검출 장치 개발 및 성능 검증
  • 미리보기

    서지정보

    · 발행기관 : 대한건축학회
    · 수록지 정보 : 대한건축학회논문집 / 40권 / 11호 / 225 ~ 232페이지
    · 저자명 : 김우영, 배재훈

    초록

    본 연구의 목적은 스마트 건설 진단을 위한 터널 자동 점검 로봇에 탑재되는 터널 라이닝 균열 검출 장치를 개발하고, 딥러닝을 활용한 균열 검출 방법을 검토하는 것이다. 터널 라이닝 균열 탐지 장치는 Pan-Tilt 장치, 녹색 단색 펄스 조명 장치, LiDAR 거리 측정기 및 자동 줌 조정 장치를 결합하여 모듈화된다. 딥러닝을 이용한 균열 검출 검증을 위해 균열 시뮬레이션 시험편을 제작하였고, 균열 검출 모델로 YOLOv5를 선정하였다. 균열탐지장치를 통해 측정한 균열모사 시험편 영상을 균열탐지모델로 검증하였다.

    영어초록

    The purpose of this study is to develop a tunnel lining crack detection device mounted on an automatic tunnel inspection robot for smartconstruction diagnosis and to examine a crack detection method using deep learning. The tunnel lining crack detection device is modularizedby combining a Pan-Tilt device, a green monochrome pulse irradiation device, a LiDAR range finder, and an automatic zoom adjustmentdevice. To verify the crack detection model using deep learning, a crack simulation specimen was produced, and YOLOv5 was selected asthe crack detection model. The crack detection model evaluation results showed a performance of recall 97.4%, precision 97.6%, andmAP50:95 80.4%. In addition, a crack simulation specimen was photographed 6m away from the crack detection device, and it wasconfirmed that all cracks in the photographed crack simulation specimen images were detected.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한건축학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:53 오후