• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델 (Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices)

13 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2020.12
13P 미리보기
사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국산업정보학회
    · 수록지 정보 : 한국산업정보학회논문지 / 25권 / 6호 / 33 ~ 45페이지
    · 저자명 : 이현식, 이웅재, 정태경

    초록

    본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.

    영어초록

    This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산업정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 11일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:28 오전