• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

오프로드 자율주행을 위한 딥러닝 기반 의미론적 분할 모델 비교 (Comparison of Deep learning based Semantic Segmentation Model for Offroad Self-driving)

7 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.10
7P 미리보기
오프로드 자율주행을 위한 딥러닝 기반 의미론적 분할 모델 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 33권 / 5호 / 423 ~ 429페이지
    · 저자명 : 김나형, 안종현

    초록

    현재 자율주행 기술은 도심에서 다니는 일반 차량에 대하여 활발한 연구가 이루어지고 있다.
    그에 반해 비포장도로의 자율주행에 대한 연구는 복잡한 지형, 불규칙한 주행조건과 같은 제약들로 인하여 더 많은 노력을 필요로 한다. 본 논문은 다양한 딥러닝 기반의 의미론적 분할네트워크들을 활용하여 오프로드 환경에서의 주행가능 영역을 판별하고 성능을 비교한다.
    기존 자율주행 연구에 활용되는 데이터셋과는 달리, 본 연구에서는 오프로드 환경을 반영한Rellis-3D 데이터셋을 타겟으로 한다. 주어진 데이터셋에 대해 해당 모델들의 성능을 비교하고 평가하기 위해서 Intersection over Union(IoU)와 Flops Per IoU (FPI)을 평가 기준치로사용한다. 이를 통해 오프로드 환경에서의 주행가능영역을 판별하는 데 가장 효율적인 네트워크를 선정한다.

    영어초록

    In self-driving, technology is being actively researched for general vehicles runningin the city. On the other hand, research on self-driving on unpaved roads requiresmore effort due to limitations such as complex terrain and irregular drivingconditions. This paper uses various deep learning-based semantic segmentationnetworks to determine the traversable area in an off-road environment and comparetheir performance. Unlike datasets used in existing autonomous driving research,this study targets the Rellis-3D dataset that reflects off-road environments.
    Intersection over Union (IoU) and Flops Per IoU (FPI) are used as evaluationcriteria to compare and evaluate the performance of the models for a given dataset.
    Through this, the most efficient network is selected to determine the drivable areain an off-road environment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:53 오전