• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

GPR 영상에서 딥러닝 기반 CNN을 이용한 배관 위치 추정 연구 (A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network)

8 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2019.08
8P 미리보기
GPR 영상에서 딥러닝 기반 CNN을 이용한 배관 위치 추정 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 20권 / 4호 / 39 ~ 46페이지
    · 저자명 : 채지훈, 고형용, 이병길, 김남기

    초록

    최근에 지하공동이나 배관의 위치 파악 등의 필요에 의해 금속을 포함하여 다양한 재질의 지하 물체를 탐지하는 일이 중요해지고있다. 이러한 이유로 지하 탐지 분야에서 GPR(Ground Penetrating Radar) 기술이 주목을 받고 있다. GPR은 지하에 묻혀 있는 물체의위치를 찾기 위하여 레이더파를 조사하고 물체로부터 반사되는 반사파를 영상으로 표현한다. 그런데 레이더 신호는 지하에서 여러가지 물체에서 반사되어 나오는 특징이 물체마다 유사한 경우가 많기 때문에 GPR 영상을 해석하는 것은 쉽지 않다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해서 영상 인식 분야에서 최근에 많이 활용되고 있는 딥러닝 기반의 CNN(Convolutional Neural Network)모델을 이용하여 임계값에 따른 GPR 영상에서의 배관 위치를 추정하고 그 실험 결과 임계값이 7 혹은 8 일 때 가장 확실하게 배관의 위치를 찾음을 증명하였다

    영어초록

    In recently years, it has become important to detect underground objects of various marterials including metals, such as detecting the location of sink holes and pipe. For this reason, ground penetrating radar(GPR) technology is attracting attention in the field of underground detection. GPR irradiates the radar wave to find the position of the object buried underground and express the reflected wave from the object as image. However, it is not easy to interpret GPR images because the features reflected from various objects underground are similar to each other in GPR images. Therefore, in order to solve this problem, in this paper, to estimate the piping position in the GRP image according to the threshold value using the CNN (Convolutional Neural Network) model based on deep running, which is widely used in the field of image recognition, As a result of the experiment, it is proved that the pipe position is most reliably detected when the threshold value is 7 or 8.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 30일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:32 오후